DOI QR코드

DOI QR Code

육상구조물군에 작용하는 지진해일파력의 3차원수치해석

Numerical Analysis for Three-Dimensional Tsunami Force Acting on Multi-Onshore Structures

  • 이광호 (나고야대학 대학원 공학연구과 사회기반공학전공) ;
  • 하선욱 (한국해양대학교 대학원 토목환경공학과) ;
  • 이귀섭 (한국해양대학교 대학원 토목환경공학과) ;
  • 김도삼 (한국해양대학교 공과대학 토목공학과)
  • 투고 : 2010.03.26
  • 심사 : 2010.11.18
  • 발행 : 2011.04.30

초록

본 연구에서는 복수의 육상구조물군에 작용하는 지진해일파력을 Navier-Stokes solver에 기초한 3차원혼상류해석법으로부터 수치적으로 검토하였다. 특히, 육상구조물의 배치형상과 호안에서의 이격거리 등에 따른 지진해일파력의 특성을 수치실험을 통해 조사하였다. 육상구조물군에 작용하는 지진해일파력에 대한 기존의 수리실험결과와 비교 및 분석하여 본 3차원수치해석의 적용성을 검토하였다. 그리고, 육상구조물에 작용하는 지진해일파력의 추정을 위해 정수압적인 방법과 동수압적인 방법을 각각 적용하여 기존실험결과 및 설계기준과의 비교를 통하여 3차원수치해석의 유용성을 검토하였으며, 기존실험결과와 수치해석결과를 동시에 고려하여 동수압적인 추정법에 관한 회귀식을 제안하였다. 이로부터 육상구조물에 작용하는 지진해일 파력의 산정에 관한 본 수치해석의 유용성을 확인할 수 있었다.

This study investigates tsunami force acting on a group of onshore structures numerically by using three-dimensional one-field model for immiscible multi-phase flows, which is based on Navier-Stokes solver. In particular, we studied on the characteristics of tsunami with respect to the arrangement of onshore structures and the distance from seawall trough numerical experiments. For validation of the numerical method used in this study to calculate tsunami force, numerical results for tsunami force on the structures in coastal area are compared with available experimental data. Furthermore, a detail study on the efficiency of the numerical method is performed for the estimation of tsunami force based on the hydrostatic and hydrodynamic methods in which the numerical results are used. The obtained results are compared to the previous experimental one and design criteria. Considering both experimental results and numerical analysis results, semi-empirical formula by regression analysis is proposed. As a result, it was confirmed that the numerical analysis is effective to estimate on tsunami force acting on onshore structures.

키워드

참고문헌

  1. 김도삼, 이광호, 허동수, 김정수(2001) VOF법에 기초한 불투과 잠제 주변파동장의 수치해석, 대한토목학회논문집, 대한토목학회, 제21권 제5B호, pp. 551-560.
  2. 이광호, 정성호, 정진우, 김도삼(2010) 공진장치를 이용한 단주기 파랑과 고립파의 제어, 대한토목학회논문집, 대한토목학회, 제30권 제1B호, pp. 89-100.
  3. 이광호, 김창훈, 김도삼, Harry Yeh, 황용태(2009a) 해안안벽과 육상구조물에서 지진해일파의 처오름 및 작용파력에 관한 수치해석, 대한토목학회논문집, 대한토목학회, 제29권 제3B호, pp. 289-301.
  4. 이광호, 김창훈, 김도삼, 황용태(2009b) 2차원수조내에서 단파의 변형과 구조물에 작용하는 단파파력에 관한 수치해석, 대한토목학회논문집, 대한토목학회, 제29권 제5B호, pp. 473-482.
  5. 이광호, 이상기, 신동훈, 김도삼(2008) 복수연직주상구조물에 작용하는 비선형파력과 구조물에 의한 비선형파랑변형의 3차원해석. 한국해안해양공학회논문집, 한국해안해양공학회, 제20권, 제1호, pp. 1-13.
  6. Akiyama, M. and Aritomi, M. (2002) Advanced numerical analysis of two-phase flow dynamics -multi-dimensional flow analysis-, Corona Publishing Co., LTD. Tokyo, Japan.
  7. Amsden, A.A. and Harlow, F.H. (1970) The SMAC method : a numerical technique for calculating incompressible fluid flow. Los Alamos Scientific Laboratory Report LA-4370, Los Alaomos, N.M.
  8. Arikawa, T., Yamada, F., and Akiyama, M. (2005) Study of the applicability of tsunami wave force in a three-dimensional numerical wave flume. Ann. J. of Coastal Engrg., JSCE, Vol. 52, pp. 46-50.
  9. Arikawa, T., Ikebe, M., Yamada, F., Shimosako, K., and Imamura, F. (2005) Large model test of tsunami force on a revement and on a land structure. Proc. of Coastal Engrg., JSCE, Vol. 52, pp. 746-750. https://doi.org/10.2208/proce1989.52.746
  10. ASCE (2006) Minimum design loads for buildings and other structures. ASCE/SEI Standard 7-05, ASCE.
  11. Asakura, R., Iwase, K., Ikeya, T., Takao, M., Kaneto, T., Fujii, N., and Omori, M. (2000) An experimental study on wave force acting on on-shore structures due to overflowing tsunamis. Proc. of Coastal Engrg., JSCE, Vol. 47, pp. 911-915. https://doi.org/10.2208/proce1989.47.911
  12. Brorsen, M. and Larsen, J. (1987) Source generation of nonlinear gravity waves with boundary integral equation method, Coastal Engrg., Vol. 11, pp. 93-113. https://doi.org/10.1016/0378-3839(87)90001-9
  13. CCH(City and County of Honolulu Building Code) (2000) Department of Planning and Permitting of Honolulu Hawaii. Chapter 16, Article 11, Hawaii, USA.
  14. Cross, R.H. (1967) Tsunami surge forces. J. of the Waterways and Harbours Division, ASCE, Vol. 93, No. WW4, pp. 201-231.
  15. Cumberbatch, E. (1960) The impact of a water wedge on a wall. J. of Fluid Mech., Vol. 7, No. 3, pp. 353-373. https://doi.org/10.1017/S002211206000013X
  16. Dames and Moore (1980) Design and Construction Standards for Residential Construction in Tsunami-prone Areas in Hawaii. FEMA, USA.
  17. FEMA-CCM (2005) Coastal Construction Manual. FEMA 55 Report, Edition 3, FEMA, USA.
  18. Fenton, J. (1972) A ninth-order solution for the solitary wave. J. of Fluid Mech., Vol. 53, No. 2, pp. 257-271. https://doi.org/10.1017/S002211207200014X
  19. Fujima, K., Achmad, F., Shigihara, Y., and Mizutani, N. (2009) Estimation of Tsunami force Acting on Rectangular Structures. J. of Disaster Research. Vol. 4 , No. 6, pp. 404-409. https://doi.org/10.20965/jdr.2009.p0404
  20. Fukui, Y., Nakamura, M., Shiraishi, H., and Sasaki, Y. (1963) Hydraulic study on tsunami. Coastal Engrg. in Japan, Vol. 6, pp. 67- 82.
  21. Grimshaw, R. (1971) The solitary wave in water of variable depth: Part 2, J. Fluid Mech., Vol. 46, pp. 611-622. https://doi.org/10.1017/S0022112071000739
  22. Hamzah, M.A., Mase, H., and Takayama, T. (1998) Direct simulation of solitary wave runup and pressure on coastal barrier. Proc. of Coastal Engrg., JSCE, Vol. 45, pp. 176-180.
  23. Hinatsu, M. (1992) Numerical simulation of unsteady viscous nonlinear waves using moving grid system fitted on a free surface, J. of Kansai Soc. Nav. Archit., Japan, No. 217, pp. 1-11.
  24. Hirt, C.W. and Nichols, B.D. (1981) Volume of fluid(VOF) method for the dynamics of free boundaries. J. of Comput. Phys., Vol. 39, pp. 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  25. Ikeno, M. and Tanaka, H. (2003) Experimental study on impulse force of drift body and tsunami runing up to land. Proc. of Coastal Engrg., JSCE, Vol. 50, pp. 721-725. https://doi.org/10.2208/proce1989.50.721
  26. Ikeno, M., Matsuyama, M., and Tanaka, H. (1998) Shoaling soliton fission of tsunami on a shelf and wave pressure for tsunamiresistant design of breakwater by large wave flume-experiments. Proc. of Coastal Engrg., JSCE, Vol. 45, pp. 366-370. https://doi.org/10.2208/proce1989.45.366
  27. Ikeno, M., Mori, N., and Tanaka, H. (2001) Experimental study on tsunami force and impulsive force by a drifter under breaking bore like tsunamis. Proc. of Coastal Engrg., JSCE, Vol. 48, pp. 846-850. https://doi.org/10.2208/proce1989.48.846
  28. Kleefsman, K.M.T., Fekken, G., Veldman, A.E.P., Iwanowski, B., and Buchner, B.(2005) A Volume-of-Fluid
  29. Kunugi, T. (2000) : MARS for multiphase calculation. CFD J., Vol. 9, No. 1, IX-563.
  30. Matsutomi, H. (1989) Impulsive force due to the collision of a bore with a floating body. Proc. of Coastal Engrg., JSCE, Vol. 36, pp. 574-578. https://doi.org/10.2208/proce1989.36.574
  31. Matsutomi, H. (1991) An experimental study on pressure and total force due to bore. Proc. of Coastal Engrg., JSCE, Vol. 38, pp. 626-630. https://doi.org/10.2208/proce1989.38.626
  32. Matsutomi, H. and Ohmukai, T. (1999) Laboratory experiments on fluid force of tsunami flooded flows. Proc. of Coastal Engrg., JSCE, Vol. 46, pp. 336-340. https://doi.org/10.2208/proce1989.46.336
  33. Miyata, H. and Nishimura, S. (1985) Finite-difference simulation of nonlinear waves generated by ships of arbitrary three-dimensional configuration, J. Comput. Phys., Vol. 60, pp. 391-436. https://doi.org/10.1016/0021-9991(85)90028-2
  34. Mizutani, S. and Imamura, F. (2000) Hydraulic ecperimental study on wave force of a bore acting on a structure. Proc. of Coastal Engrg., JSCE, Vol. 47, pp. 946-950. https://doi.org/10.2208/proce1989.47.946
  35. Mizutani, S. and Imamura, F. (2002) Design of coastal structure including the impact and overflow on tsunamis. Proc. of Coastal Engrg., JSCE, Vol. 49, pp. 731-735. https://doi.org/10.2208/proce1989.49.731
  36. Ohyama, T. and Nadaoka, K. (1991) Development of a numerical wave tank for analysis of non-linear and irregular wave field, Fluid Dyna. Res., Vol. 8, pp. 231-251. https://doi.org/10.1016/0169-5983(91)90045-K
  37. Ramsden, J.D. (1993) Tsunami : Forces on a vertical wall caused by long waves, bores, and surges on a dry bed. Ph.D. Thesis, California Institute of Technology, California, USA.
  38. Ramsden, J.D. and Raichlen, F. (1990) Forces on vertical wall caused by incident bores, J. of Waterway, Port, Coastal, and Ocean Engrg, ASCE, Vol. 116, No. 5, pp. 592-613. https://doi.org/10.1061/(ASCE)0733-950X(1990)116:5(592)
  39. Rudman, J.D. (1997) Volume-tracking methods for interfacial flow calculations. Int. J. Numer. Methods in Fluids, Vol. 24, pp. 671- 691. https://doi.org/10.1002/(SICI)1097-0363(19970415)24:7<671::AID-FLD508>3.0.CO;2-9
  40. Simamora, C., Shigihara, Y., and Fujima, K. (2007) Experimental Study on Tsunami Forces Acting on Structures. J. of Coastal Engrg., JSCE, Vol. 54, pp. 831-835. https://doi.org/10.2208/proce1989.54.831
  41. Smagorinsky, J. (1963) General circulation experiments with the primitive equations. Mon, Weath. Rev., Vol. 91, No. 3, pp. 99- 164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  42. Tanimoto, K., Takayama, T., Murakami, K., Murata, S., tsuruya, H., takahashi, S., Morikawa, M., Yoshimoto, Y., Nakano, S., and Hiraishi, T. (1983) Field and laboratory investigations of the tsunami caused by 1983 Nihonkai chubu earthquake. Technical note, PARI, Japan, No. 470, pp. 299.
  43. Tanimoto, K., Tsuruya, H., and Nakano, S. (1984) Experimental study of tsunami force and investigation of the cause of sea wall damages during 1983 Nihonkai chubu earthquake. Proc. of 31th Japanese Conf. on Coastal Engrg., JSCE, pp. 257-261.
  44. Tome, M.F. and McKee, S. (1994) GENSMAC : A computational marker and cell method for free-surface flows in general domains, J. of Comput. Phys., Vol. 110, pp. 171-186. https://doi.org/10.1006/jcph.1994.1013
  45. Xiao, H. and Huang, W. (2008) Numerical modeling of wave runup and forces on an idealized beachfront house. Ocean Engrg., Vol. 35, pp. 106-116. https://doi.org/10.1016/j.oceaneng.2007.07.009
  46. Yeh, H. (2006) Maximum fluid forces in the tsunami runup zone. J. of Waterway, Port, Coastal, and Ocean Engrg, ASCE, Vol. 132, No. 6, pp. 496-500. https://doi.org/10.1061/(ASCE)0733-950X(2006)132:6(496)
  47. Yeh, H. (2007) Design tsunami forces for onshore structures. J. of Disaster Research, Vol. 2, No. 6, pp. 1-6.
  48. Yeh, H. and Robertson, I. (2005) Development of design guideline for tsunami shelters, First International Conference on Urban Disaster Reduction, Kobe, Japan.
  49. Yeom, G.S., Mizutani, N., shiraishi, K., Usami, A., Miyajima, S., and Tomita, T. (2007) Study on behavior of drifting containers due to tsunami and collision forces. Proc. of Coastal Engrg., JSCE, Vol. 54, pp. 851-855. https://doi.org/10.2208/proce1989.54.851
  50. Yeom, G.S., Nakamura, T., Usami, A., and Mizutani, N. (2008) Study on estimation of collision force of a drifted container using fluid-structure interaction analysis.. Proc. of Coastal Engrg., JSCE, Vol. 55, pp. 281-285. https://doi.org/10.2208/proce1989.55.281