DOI QR코드

DOI QR Code

A Study on Engine Performance at the Intake Air Compensation by Supercharging in the Low Speed Diesel-Atkinson Cycle

과급에 의한 흡입공기 보상 시 저속 디젤-아트킨슨사이클에서 엔진성능에 대한 연구

  • 장태익 (한라대학교 기계자동차공학부)
  • Received : 2011.08.08
  • Accepted : 2011.11.16
  • Published : 2011.11.30

Abstract

In this study, in the high expansion cycle was conduced by variable valve timing system composition to close intake valve late, and in the intake air reduction on the low compression was solved by supercharging pressure. In this wise, by constituting Diesel-Atkinson cycle, this study looked into a possibility of thermal efficiency improvement. As a result, there was improvement in thermal efficiency and output in a whole range of closing timing from ABDC $40^{\circ}$ to ABDC $80^{\circ}$. However, after ABDC $70^{\circ}$ of closing timing, the thermal efficiency increase was getting smaller. As the result of the study, the optimum intake valve closing timing was about ABDC $70^{\circ}$, high loading territory of engine was more effective than low loading territory, and engine operation in middle loading territory was stable. At this time, brake thermal efficiency was 12.5% higher than ordinary engine on average.

본 연구에서는 고팽창사이클의 경우 가변밸브시스템을 구성하여 흡기밸브 닫힘시기를 늦추는 방식으로 실현하였고, 저압축에 따른 흡입공기의 감소는 과급압력으로 해결하였다. 이와 같이 디젤기관에 아트킨슨사이클을 실현하여 엔진의 열효율향상 가능성을 알아보았다. 그 결과 흡기밸브 닫힘시기 ABDC $40^{\circ}$ 부터 ABDC $80^{\circ}$ 까지 전 영역에 걸쳐 열효율 및 출력의 향상이 있었다. 다만, 흡기밸브 닫힘시기가 ABDC $70^{\circ}$이후로는 열효율 증가 폭이 둔화되는 경향을 보였다. 위와 같은 연구결과 저속 디젤-아트킨슨사이클화의 최적 연소조건은 흡기밸브 닫힘시기가 ABDC $70^{\circ}$전후로 보이며, 고부하영역이 저부하영역보다 더 효과적으로 나타났고, 중부하영역에서 기관운전은 안정적이었다. 이때 정미열효율은 통상의 디젤기관보다 평균 약 12.5% 높게 나타났다.

Keywords

References

  1. T. I. Jang, "A Study on the cycle analyzing and intake valve control by the miller method with a high expansion into low-speed diesel engine", Joural of the Korean society of Marine Engineering, vol. 33, no. 8, pp. 26-32. 2009.
  2. T. I. Jang, "A Study on the problem-solving method and thermal efficiency properties at the time of high expansion realization in a 4-cycle diesel engine", Joural of the korean society of Marine Engineering, vol. 33, no. 6, pp. 51-58. 2009.
  3. I. Jang, "A study on the theory analysis and engine test performance by a high expansion diesel engine into intake-exhaust consideration", Joural of the korean society of Marine Engineering, vol. 32, no. 8, pp. 55-60. 2008.
  4. 장태익, 정양주, 노기철, 이종태, "디젤-아트킨슨 사이클의 고팽창법 강구를 위한 연구(I)", 한국자동차공학회 춘계학술대회 논문집II, pp. 500-506. 2002.
  5. 장태익, 정양주, 이종태, "대형 롱스트로크 디젤 기관의 아트킨슨사이클화에 관한 연구", 한국자동차공학회 춘계학술대회 논문집II, pp. 225-231. 2001.
  6. Naoharu Ueda, Hiroshi Sakai, Junso Sasaki, and Naohide Iso, "The Miller cycle gasoline engine for a light duty truck", Joural of the Japan Society of Automotive Engineering, vol. 33, 9633027.
  7. C. M. Chung, J. T. Lee, J. W. Cho, "Trends in technical & development of miller cycle for gasoline engine", Journal of Korea Society of Automotive Engineers, vol. 17, no.1. 1995.
  8. Ryo Shimizu, Masaki Fujii, Takasi Suzuki, Masao Inoue, "Miller cycle engine management system and its distinctive feature", Joural of the Japan Society of Automotive Engineers Review, pp. 305-308, 1994.
  9. T. Goto, et al., "Development of V6 Miller Cycle Gasoline Engine", SAE 940198.
  10. W.L.R. Gallo, "Thermodynamic Evaluation of Valve Timing", SAE 921479.