• Title/Summary/Keyword: Effective compression ratio

Search Result 197, Processing Time 0.026 seconds

A High Expansion Effects of Atkinson Cycle by adopting Variable Intake Valve Closing Timing with Compensated Intake Air-mass and Effective Compression Ratio. (흡입공기량 및 유호압축비 보상시 흡입밸브닫힘시기 변화에 의한 고팽창효과)

  • Jeong, Yang-Joo;Kim, Yun-Young;Lee, Jong-Tai
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1698-1703
    • /
    • 2004
  • To understand the high expansion effects by adopting intake closing time in the cases of compensating intake air-mass and effective compression ratio simultaneously, fundamental study was carried out by using RICEM realizing Atkinson cycle. Intake air-mass and effective compression ratio were compensated by increasing supercharged pressure and geometric compression ratio. The results showed that the increasing rates of expansion ratio and expansion-compression ratio were increased by compensating both a intake air-mass and effective compression ratio the same tendencies were obtained with the increases of compression ratio and cut off ratio It was also found that LIVC has more advantages in expansion ratio and effective work than those of EIVC under above conditions.

  • PDF

A Study on the Performance Characteristics According to the Compression Ratio of Spark Ignition Engine Fuelled with Coal Oil (Coal Oil을 사용한 스파크 점화기관의 압축비 변화에 따른 엔진 성능에 관한 연구)

  • HAN, SUNG BIN;CHUNG, YON JONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.225-230
    • /
    • 2017
  • Coal oil is widely used as a home heating fuel for portable and installed coal oil heaters. Today, Coal oil is widely used as fuel for jet engines and some rocket engines in several grades. This paper describes the performance characteristics according to the compression ratio of spark ignition engine fuelled with coal oil. As a result, the following knowledge is obtained: As the compression ratio is decreased, there is an increase in torque, indicated mean effective pressure (IMEP), heat release rate, and brake thermal efficiency. Higher compression ratio of the engine decreases the ignition delay period, combustion period, and cooling loss.

A Thermodynamic Analysis on the Performance with turning Diesel Cycle into Diesel-Atkinson Cycle (디젤기관의 아트킨슨 사이클화에 따른 제반성능의 열역학적 해석)

  • 노기철;정양주;이종태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.1-11
    • /
    • 2004
  • In order to recognize thermal efficiency and power improvement in case that diesel cycle is turned into diesel-atkinson cycle, the fuel-air diesel-atkinson cycle considered gas exchange process is analyzed non-dimensionally and thermodynamically. As a result, in case of diesel-atkinson cycle, as expansion ratio is increased, thermal efficiency and mean effective pressure is increased and it has maximum value at Rec=1. When diesel cycle is turned into diesel-atkinson cycle by late intake valve closing timing, thermal efficiency and power is decreased because of the decline of effective compression ratio and intake airflow, but it could be compensated by increase of compression ratio or super-charged. In case compression ratio is compensated, Rec appears 1 around 100$^{\circ}$ ABDC, and it is expected that thermal efficiency is enhanced by 14.3% compared with conventional diesel cycle. In case compression ratio and intake airflow are compensated simultaneously, super-charged pressure is demanded 2.06bar at Rec=1 and it is more efficient when only compression ratio is compensated in the view point of thermal efficiency.

A Study on the Problem-Solving Method and Thermal Efficiency Properties at the Time of High Expansion Realization in a 4-Cycle Diesel Engine (4사이클 디젤기관에서 고팽창 실현 시 문제점 해결방안과 열효율 특성에 대한 연구)

  • Jang, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.835-842
    • /
    • 2009
  • The present thesis carried out a research on a compression pressure's reduction phenomenon and its countermeasure according to the thermal efficiency improvement method by a Miller method in 4-cycle low speed diesel engine. In case of retardation of intake valve closing time in a engine, the theoretical heat efficiency shows a remarkably reducing trend when a compression ratio is not compensated. Accordingly, the thermal efficiency showed an increasing trend in case of compensating the compression ratio. Especially, it could be understood that the theoretical heat efficiency at near ABDC $100^{\circ}$ of intake valve closing time in case of compensation of the compression ratio was improved by around 25.1%, and the mean effective pressure was also increased by around 18.6%. Also, as the retardation of intake valve closing time increases, air quantity becomes insufficient due to a backflow phenomenon of intake air and thus thermal efficiency was decreased in a high load operation domain. The solving method of this problem is possible by supercharge. Therefore, in order to improve thermal efficiency by retardation of ntake valve closing time, the thermal efficiency improvement according to low compression is possible when there are a compensation device of a compression ratio and a supercharge device. This is a problem-solving method of low compression and high expansion cycle.

A Study on the Composition of Atkinson Cycle and Thermodynamically Analysis for a Diesel Engine (디젤기관에 대한 앳킨슨사이클 구성과 사이클의 열역학적 해석에 관한 연구)

  • Kim Chul Soo;Jung Young Guan;Jang Tae lk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.185-193
    • /
    • 2005
  • The present study composed a diesel-atkinson cycle of high expansion as a method of achieving high efficiency in diesel cycle engines. It also interpreted the cycle engine thermodynamically analysis to determine the possibility of the improvement of thermal efficiency and clarified the characteristics of several factors . According to the result of theoretical analysis, heat efficiency was highest when expansion-compression ratio Reど:1. In addition. diesel engines with high apparent compression ratio had higher expansion-compression ratio than otto engines and consequently their effect of high expansion was high. which in turn enhanced thermal efficiency. When the atkinson cycle was implemented in a real diesel engine by applying the miller cycle through the variation of the closing time of the intake valve, the effective compression ratio and the quantify of intake air decreased and as a result, the effect of high expansion was not observed. Accordingly. the atkinson cycle can be implemented when the quantity of intake air is compensated by supercharge and the effective compression ratio is maintained at its initial level through the reduction of the clearance volume. In this case. heat efficiency increased by $4.1\%$ at the same expansion-compression ratio when the apparent compression ratio was 20 and the fuel cut off ratio was 2. As explained above, when the atkinson cycle was used for diesel cycle. heat efficiency was improved. In order to realize high expansion through retarding the intake value closing time, the engine needs to be equipped with variable valve timing equipment, variable compression ratio equipment and supercharged Pressure equipment. Then a diesel-atkinson cycle engine is realized.

Comparison of quality of 30:2 vs. 2:30 CPR in manikins (심폐소생술 방법 변화에 따른 quality 비교 - 30:2와 2:30 비교분석실험 -)

  • Uhm, Tai-Hwan;Yoou, Soon-Kyu;Choi, Hea-Kyung;Jung, Ji-Yeon
    • The Korean Journal of Emergency Medical Services
    • /
    • v.14 no.3
    • /
    • pp.71-81
    • /
    • 2010
  • Purpose: To minimize an interruption in chest compression, reduce the hands-off time, the American Heart Association has recommended the ratio of chest compression to ventilation ratio to 30:2 from 2005 CPR guideline to 2010 CPR guideline. However, current studies have shown that the hands-off time was > 10 seconds with that method. For this reason, we devised new CPR method that a ventilation to chest compression ratio of 2:30 to reduce pt assessment time and skipped the assessment step of carotid artery pulse would be a more effective way to reduce the hands-off time & the time to set the CPR. According to the more detailed purpose are listed below. 1) We would like to confirm efficiency of a ventilation to chest compression ratio of 2:30 than a chest compression to ventilation ratio of 30:2 to reduce the hands-off time & the time to set the CPR. 2) We would like to evaluate possibility of increasing for chest compression accuracy of a ventilation to chest compression ratio of 2:30 than a chest compression to ventilation ratio of 30:2 3) We would like to evaluate possibility of increasing for ventilation accuracy of a ventilation to chest compression ratio of 2:30 than a chest compression to ventilation ratio of 30:2 Methods: According to 2005 American Heart Association Guidelines, 60 paramedic students(20 students X freshmen, sophomore, junior) performed 5 cycles of 3~ chest compressions : 2 ventilations after A, B, C evaluation with Laerdal Resusci R Anne SkillReporters. After 5 minutes rest, the 60 students performed 5 cycles of 2 ventilations : 30 chest compressions after A, B evaluation with the manikins between 13 and 17 September 2010. The short reports including speed & accuracy of chest compression, respiratory, CPR cycle were gained from the manikins. Hands-off times were measured by assistants. Results: Recently, the importance of high quality CPR was emphasized in order to perform the CPR faster and more accurate. To find out improving the conventional CPR method, we switch the procedure of the compression and the ventilation. By switching the procedure back and forth, we are able to compare the effectiveness of CPR between two type of CPR method which are 2:30 and 30:2 methods. 2:30 is that the breaths is delivered twice, first and perform 30 compressions while 30:2 perform 30 compressions first and give 2 breaths followed by the ABC method. Also, we verify the effectiveness of the hands off time, compression accuracy of the compression through the comparison of the two procedure as mentioned earlier. Consequently research verified that 2:30 is the efficient by providing faster set up delivering more accurate chest compression. Conclusion: 2:30 can minimize a time delay from cardiac standstill until starting the chest compression. In addition, hands-off time which is an interruption in chest compression can be shortened by 2:30 method, which result to effective oxygenation of coronary artery & maintenance of the bloodstream. Once again, performing the 2:30 method provide lessen hands off time and increase the accuracy of the chest compression.

  • PDF

A Study on the Theory Analysis and Engine Test Performance by a High Expansion Diesel Engine into Intake-Exhaust Consideration (흡.배기를 고려한 고팽창 저속 디젤 기관의 이론 해석과 기관 성능에 대한 연구)

  • Jang, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1141-1148
    • /
    • 2008
  • One of the methods to increase the efficiency of an engine is to expand pressures obtained from combustions equal to the pressure of atmosphere as much as possible and then convert thermal energy into mechanical energy also as much as possible. In this research, the Diesel cycle was thermodynamically interpreted to evaluate the possibility of high efficiency by converting Diesel engines to the Atkinson cycle, and general cycle features were analyzed after comparing these two cycles. In the case of fuel air the Diesel-Atkinson cycle considering intake and exhaust similar to real cycles, the value of thermal efficiency and average effective pressure increased, though their values were smaller than those of standard air amount cycle, when expansion compression ratio increased. When normal Diesel engines of which compression stroke and expansion stroke are all the same, was converted to the Atkinson cycle by changing the time of intake value close, combustion pressure reduced due to reduced expansion compression ratio and intake air amount due to decreased effective cycle volume.

A Chancteristic of Thermal Efficiency in Order to High Expansion Realization with a Retard of Intake Valve Closing Time in the Low Speed Diesel Engine (저속 디젤기관에서 흡기밸브 닫힘시기 지연시 고팽창 실현을 위한 열효율 특성)

  • Jang Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.42-49
    • /
    • 2006
  • In this research. the diesel cycle was thermodynamically interpreted to evaluate the possibility of high efficiency by converting diesel engines to the high expansion diesel cycle, and general cycle features were analyzed after comparing these two cycles. Based on these analyses. an experimental single cylinder a long stroke with high expansion-diesel engine. of which S/B ratio was more than 3, was manufactured. After evaluating the base engine through basic experiments, a diesel engine was converted into the high expansion diesel engine by establish VCR device and VVT system Accordingly, the high expansion diesel cycle can be implemented when the quantity of intake air is compensated by supercharge and the effective compression ratio is maintained at its initial level through the reduction of the clearance volume. In this case, heat efficiency increased by $5.0\%$ at the same expansion-compression ratio when the apparent compression ratio was 20 and the fuel cut off ratio was 2. As explained above, when the atkinson cycle was used for diesel cycle, heat efficiency was improved. In order to realize high expansion through retarding the intake value closing time, the engine needs to be equipped with variable valve timing equipment, variable compression ratio equipment and supercharged pressure equipment. Then a high expansion diesel cycle engine is realized.

An Experimental Study on Expansion of Operation Range by Lean Boosting for a HCCI H2 Engine (희박과급에 의한 수소 예혼합 압축착화 기관의 운전영역 확장에 관한 실험적 연구)

  • Ahn, Byunghoh;Lee, Jonggoo;Lee, Jongmin;Lee, Jongtai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.573-579
    • /
    • 2013
  • Hydrogen engine with homogeneous charged compression ignition can achieve high efficiency by high compression ratio and rapid chemical reaction rates spatially. However, it needs to expansion of the operation range with over-all load conditions which is very narrow due to extremely high pressure rise rate. The adoption of the lean boosting in a HCCI $H_2$ engine is expected to be effective in expansion of operation range since minimum compression ratio for spontaneous ignition is decreased by low temperature combustion and increased surround in-cylinder pressure. In order to grasp its possibility by using lean boosting in the HCCI $H_2$ engine, compression ratio required for spontaneous ignition, expansion degree of the operation range and over-all engine performance are experimentally analyzed with the boosting pressure and supply energy. As the results, it is found that minimum compression ratio for spontaneous ignition is down to the compression ratio(${\varepsilon}$=19) of conventional diesel engine due to decreased self-ignition temperature, and operation range is extended to 170% in term of the equivalence ratio and 12 times in term of the supply energy than that of naturally aspirated type. Though indicated thermal efficiency is decreased by reduced compression ratio, it is over at least 46%.

A Pattern Matching Extended Compression Algorithm for DNA Sequences

  • Murugan., A;Punitha., K
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.196-202
    • /
    • 2021
  • DNA sequencing provides fundamental data in genomics, bioinformatics, biology and many other research areas. With the emergent evolution in DNA sequencing technology, a massive amount of genomic data is produced every day, mainly DNA sequences, craving for more storage and bandwidth. Unfortunately, managing, analyzing and specifically storing these large amounts of data become a major scientific challenge for bioinformatics. Those large volumes of data also require a fast transmission, effective storage, superior functionality and provision of quick access to any record. Data storage costs have a considerable proportion of total cost in the formation and analysis of DNA sequences. In particular, there is a need of highly control of disk storage capacity of DNA sequences but the standard compression techniques unsuccessful to compress these sequences. Several specialized techniques were introduced for this purpose. Therefore, to overcome all these above challenges, lossless compression techniques have become necessary. In this paper, it is described a new DNA compression mechanism of pattern matching extended Compression algorithm that read the input sequence as segments and find the matching pattern and store it in a permanent or temporary table based on number of bases. The remaining unmatched sequence is been converted into the binary form and then it is been grouped into binary bits i.e. of seven bits and gain these bits are been converted into an ASCII form. Finally, the proposed algorithm dynamically calculates the compression ratio. Thus the results show that pattern matching extended Compression algorithm outperforms cutting-edge compressors and proves its efficiency in terms of compression ratio regardless of the file size of the data.