Radiation Dose and Estimate of Lifetime Attributable Risk of Cancer from Coronary Angiography and Percutaneous Coronary Intervention

관상동맥조영술과 경피적관상동맥중재술에서 환자 선량과 암 발생 생애귀속위험 평가

  • Kang, Yeong-Han (Department of Diagnostic Radiology, Daegu Catholic University Hospital) ;
  • Kim, Bu-Sun (Department of Radiologic Technology, Daegu Health College) ;
  • Park, Jong-Sam (Department of Radiologic Technology, Daegu Health College)
  • 강영한 (대구가톨릭대학병원 영상의학과) ;
  • 김부순 (대구보건대학 방사선과) ;
  • 박종삼 (대구보건대학 방사선과)
  • Received : 2010.07.31
  • Accepted : 2010.09.06
  • Published : 2010.09.30

Abstract

The Purpose of this study was to determine the effective dose to an average patient from Coronary Angiography (CA) and Percutaneous Coronary Intervention (PCI). And to estimate the lifetime attributable risk (LAR) of cancer associated with radiation exposure from CA and PCI. The dose-area product (DAP) values to the patient were recorded from 60 CA and 58 PCI. A Monte Carlo based program PCXMC was used to calculate the effective dose from DAP values for each patient. Lifetime attributable risks were estimated with models developed in the National Academies' Biological Effects of Ionizing Radiation VII report. The mean DAP values was $53.76\;Gy{\cdot}cm^2$ for CA and $165.82\;Gy{\cdot}cm^2$ for PCI. Mean effective dose were 1.28 mSv in CA, 3.94 mSv in PCI. Results of Calculate organ dose, lung doses was 2.17 mSv in CA and 6.71 mSv in PCI. Female breast doses was 5.45 mSv in CA and 16.82 mSv in PCI. LAR estimates for CA varied from 1 in 1,508 for man to 1 in 1,357 for women. In PCI procedure varied from 1 in 553 for man to 1 in 482 for women. DAP can be used as the dose indicator to calculate the organ dose and effective dose of patient based on Monte Carlo simulation. These dose estimates derived from our simulation models suggest that CA and PCI are associated with a nonnegligible LAR of cancer. This risk varies markedly and is considerably greater for women, PCI than for man, CA.

관상동맥질환의 진단과 치료를 위한 관상동맥조영술(Coronary Angiography, CA)과 경피적관상동맥중재술(Percutaneous Coronary Intervention, PCI) 과정에서 환자에 대한 유효선량을 알아보고, 이 선량으로 인한 암 발생위험을 CA와 PCI를 구분하여 평가해 보고자 하였다. CA를 시행한 환자 60명과 PCI 시술을 받은 환자 58명을 대상으로 DAP(dose-area product)를 측정하였고, 몬테카를로 시뮬레이션(Monte Carlo simulations) 프로그램(PCXMC 1.5)을 이용하여 유효선량과 장기선량을 산출하였다. 암 발생의 생애귀속위험의 평가는 전리방사선 생물학적 효과 위원회의 7차 보고서(BEIR VII)를 활용하였다. 그 결과 대상자의 DAP 값 평균은 CA군에서 $53.76\;Gy{\cdot}cm^2$이었고, PCI군에서는 $165.82\;Gy{\cdot}cm^2$이었다. 유효선량은 CA군에서 평균 1.28 mSv이었고, PCI군에서는 3.94 mSv이었다. 장기선량은 폐에서 CA군 2.17 mSv, PCI군 6.71 mSv이었고, 여성 유방선량은 CA에서 5.45 mSv, PCI에서 16.82 mSv이었다. 암 발생 생애귀속위험은 CA에서 남성은 1,508명 중 1명, 여성은 1,357명 중 1명이었고, PCI에서는 남성 553 중 1명, 여성은 482명 중 1명이었다. DAP 값은 몬테 카를로 시뮬레이션을 기본으로 하여 장기선량과 유효선량을 계산할 수 있는 지표가 되었다. CA와 PCI 과정에서 환자에게 노출되는 방사선량은 무시할 수 없는 암 발생의 생애귀속위험이 된다. 또한 암 발생 위험은 PCI군에서 더 높았고, 남성보다는 여성이 더 높았다.

Keywords

References

  1. 마상철, 김함겸, 박병섭, 구효근, 유상재, 백성일 등: Vascular and Interventional Radiology, 대학서림,2008
  2. Wilde P, Pitcher EM, Slack K: Radiation hazards for the patient in cardiological procedures. Heart, 85, 127-130, 2001 https://doi.org/10.1136/heart.85.2.127
  3. Neofotistou V, Vano E, Padovani R, et al.: Preliminary reference levels in interventional cardiology. Eur Radiol, 13, 2259-2263, 2003 https://doi.org/10.1007/s00330-003-1831-x
  4. Hynes DM, Gershater R, Edmonds EW, Rowlands JA, Baranoski D, Turow DG: Radiation dose implications of digital angiographic systems. Am J Roent, 143, 307-312, 1984 https://doi.org/10.2214/ajr.143.2.307
  5. Baldazzi G, Corazza I, Rossi PL, et al.: In vivo effectiveness of gadolinium filter for paediatric cardiac angiography in terms of image quality and radiation exposure. Phys Med, 18, 109-113, 2002
  6. Schueler BA, Julsrud PR, Gray JE, John GS, Kan KW: Radiation exposure and efficacy of exposure-reduction techniques during cardiac catheterization in children. Am J Roent, 162, 173-177, 1994 https://doi.org/10.2214/ajr.162.1.8273659
  7. Harrison D, Ricciardello M, Collins L: Evaluation of radiation dose and risk to the patient from coronary angiography. Aust NZ J Med, 28, 597-603, 1998 https://doi.org/10.1111/j.1445-5994.1998.tb00654.x
  8. Delichas MG, Psarrakos K, Molyva-Athanassopoulou E, Giannoglou G, Hatziioannou K, Papanastassiou E: Radiation doses to patients undergoing coronary angiography and percutaneous transluminal coronary angioplasty. Radiat Prot Dosimetry, 103(2), 149-154, 2003 https://doi.org/10.1093/oxfordjournals.rpd.a006126
  9. Stisova V: Effective dose to patient during cardiac interventional procedures(Prague workplaces). Radiat Prot Dosimetry, 111(3), 271-274, 2004 https://doi.org/10.1093/rpd/nch336
  10. Vijayalashmi K, Kelly D, Chapple CL, et al.: Cardiac catheterisation: radiation doses and lifetime risk of malignancy. Heart, 93, 370-371, 2007 https://doi.org/10.1136/hrt.2006.098731
  11. Tapiovaara M, Lakkisto M, Servomaa A: A PC-based Monte Carlo program for calculating patient doses in medical X-ray examinations. STUK-A 139, Helsinki Finland; Program version 1.5, 2001
  12. Committee to Assess Health Risks from Exposure to low levels of Ionizing Radiation; Nuclear and Radiation Studies Board, Division on Earth and Life Studies, National Research Council of the National Academies. Health risks from Exposure to Low Levels of Ionizing Radiation, BEIR Ⅶ Phase 2. Washington, DC: The National Academies Press; 2006
  13. Tsapaki V, Kottou S, Vano E, et al.: Patient dose values in a dedicated Greek cardiac centre. Br J Radiol, 76, 726-730, 2003 https://doi.org/10.1259/bjr/73325000
  14. Kuon E, Dahm JB, Schmitt M, Glaser C, Gefeller O, Pfahlberg A: Time of day influences patient radiation exposure from percutaneous cardiac interventions. Br J Radiol, 76, 189-191, 2003 https://doi.org/10.1259/bjr/14780035
  15. Kuon E, Glaser C, Dahm JB: Effective techniques for reduction of radiation dosage to patients undergoing invasive cardiac procedures. Br J Radiol, 76, 406-413, 2003 https://doi.org/10.1259/bjr/82051842
  16. Padovani R, Bernardi G, Malisan MR, Vano E, Morocutti G, Fioretti PM: Patients dose related to the complexity of interventional cardiology procedures. Radiat Prot Dosimetry, 94(1-2), 189-192, 2001 https://doi.org/10.1093/oxfordjournals.rpd.a006469
  17. K Faulkner, DA Broadhead, RM Harrison: Patient dosimetry measurement methods. Applied Radiation and Isotopes, 50(1), 113-123, 1999 https://doi.org/10.1016/S0969-8043(98)00031-1
  18. Bor D, $Ol\breve{g}ar$ T, Toklu T, $Ca\breve{g}lan$ A, Onal E, Padovani R: Patient doses and dosimetric evaluations in interventional cardiology. Phys Med, 25(1), 31-42, 2009 https://doi.org/10.1016/j.ejmp.2008.03.002
  19. D Harrison, M Ricciardello, L Collins: Evaluation of radiation dose and risk to the patient from coronary angiography. Aust NZ J Med, 28, 597-603, 1998 https://doi.org/10.1111/j.1445-5994.1998.tb00654.x
  20. Efstathios PE, Makrygiannis SS, Kottou S, et al.: Medical personnel and patient dosimetry during coronary angiography and intervention. Phys Med Biol, 48, 3059-3068, 2003 https://doi.org/10.1088/0031-9155/48/18/307
  21. Sandborg M, Fransson SG, Petterson H: Evaluation of patient-absorbed doses during coronary angiography and interventional by femoral and radial artery access. Eur Radiol, 14, 653-658, 2004 https://doi.org/10.1007/s00330-003-2120-4
  22. Andrew JE, Kevin WM, Randall CT, Manuel DC, Milena JH: Radiation dose to Patients From Cardiac Diagnostic Imaging. Circulation, 116, 1290-1305, 2007 https://doi.org/10.1161/CIRCULATIONAHA.107.688101