• Title/Summary/Keyword: 장기선량

Search Result 445, Processing Time 0.03 seconds

구동 팬톰 시스템을 통한 내부 장기 움직임의 선량 평가

  • Kim, Jae-Gyun;Kim, Yun-Jong;Lee, Dong-Han;Lee, Dong-Hun;Kim, Mi-Suk;Jo, Cheol-Gu;Ryu, Seong-Ryeol;Yang, Gwang-Mo;Yu, Hyeong-Jun;Ji, Yeong-Hun
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.64-67
    • /
    • 2005
  • 본 연구의 목적은 호흡 운동에 영향을 받는 내부 장기의 움직임을 정량적으로 분석하고, 그 결과를 토대로 움직이는 내부 장기의 선량 분포를 측정하고 평가하는 것이다. 그리고 이전에 보고된 논문에서 개발된 움직임 감소 장치의 사용 유무에 따른 내부 장기의 선량 분포 또한 분석하는 것이다. 이를 위하여 1차원적으로 움직이는 구동 팬톰 시스템을 개발하였고, 6MV X-ray에서 Kodak X-omat V 필름을 사용하여 움직이는 내부 장기의 선량분포를 실험적으로 측정하였다. 이 결과로부터 호흡 운동으로 인한 움직이는 내부 장기 및 종양에 조사되는 선량의 부정확도를 평가할 수 있었고, 움직임 감소 장치를 사용했을 때 선량의 부정확도가 감소함을 확인할 수 있었다.

  • PDF

Evaluation of Effective and Organ Dose Using PCXMC Program in DUKE Phantom and Added Filter for Computed Radiography System (CR 환경에서의 흉부촬영 시 Duke Phantom과 부가여과를 이용한 유효선량 및 장기선량 평가)

  • Kang, Byung-Sam;Park, Min-Joo;Kim, Seung-Chul
    • Journal of radiological science and technology
    • /
    • v.37 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • By using a Chest Phantom(DUKE Phantom) focusing on dose reduction of diagnostic radiation field with the most use of artificial radiation, and attempt to reduce radiation dose studies technical radiation. Publisher of the main user of the X-ray Radiological technologists, Examine the effect of reducing the radiation dose to apply additional filtering of the X-ray generator. In order to understand the organ dose and effective dose by using the PC-Based Monte Carlo Program(PCXMC) Program, the patient receives, was carried out this research. In this experiment, by applying a complex filter using a copper and Al(aluminum,13) and filtered single of using only aluminum with the condition set, and measures the number of the disk of copper indicated by DUKE Phantom. The combination of the composite filtration and filtration of a single number of the disk of the copper is the same, with the PCXMC 2.0. Program looking combination of additional filtration fewest absorbed dose was calculated effective dose and organ dose. Although depends on the use mAs, The 80 kVp AP projection conditions, it is possible to reduce the effective amount of about 84 % from about 30 % to a maximum at least. The 120 kVp PA projection conditions, it is possible to reduce the effective amount of about 71 % from about 41 % to a maximum of at least. The organ dose, dose reduction rate was different in each organ, but it showed a decrease of dose rate of 30 % to up 100 % at least. Additional filtration was used on the imaging conditions throughout the study. There was no change in terms of video quality at low doses. It was found that using the DUKE Phantom and PCXMC 2.0 Program were suitable to calculate the effect of reducing the effective dose and organ dose.

Development of the Reference Korean Female Voxel Phantom (한국인 기준여성 체적소형 모의체 개발)

  • Ham, Bo-Kyoung;Cho, Kun-Woo;Yeom, Yoen-Soo;Jeong, Jong-Hwi;Kim, Chan-Hyeong;Han, Min-Cheol
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.1
    • /
    • pp.41-49
    • /
    • 2012
  • The objective of this study is for development of the reference Korean female phantom, HDRK-Woman. The phantom was constructed by adjusting a Korean woman voxel phantom to the Reference Korean data. The Korean woman phantom had been developed based on the high-resolution color slice images obtained from an adult Korean female cadaver. There were a total of 39 organs including the 27 organs specified in ICRP 103 for effective dose calculation. The voxel resolution of the phantom was $1.976{\times}1.976{\times}2.0619\;mm^3$ and the voxel array size is $261{\times}109{\times}825$ in the x, y and z directions. Then, the voxel resolution was changed to $2.0351{\times}2.0351{\times}2.0747\;mm^3$ for adjustment of the height and total bone mass of the phantom to the Reference Korean data. Finally, the internal organs and tissue were adjusted using in-house software program developed for 3D volume adjustment of the organs and tissue. The effective dose values of HDRK phantoms were calculated for broad parallel photon beams using MCNPX Monte Carlo code and compared with those of ICRP phantoms.

Radiation Dose of Lens and Thyroid in Linac-based Radiosurgery in Humanoid Phantom (선형가속기형 방사선수술시 인형 팬텀에서 수정체 및 갑상선 선량)

  • Kim, Dae-Yong;Kim, Il-Han
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.517-529
    • /
    • 1998
  • Purpose : Although many studies have investigated the dosimetric aspects of stereotactic radiosurgery in terms of target volume, the absorbed doses at extracranial sites: especially the lens or thyroid - which are sensitive to radiation for deterministic or stochastic effect -have infrequently been reported. The aim of this study is to evaluate what effects the parameters of radiosurgery have on the absorbed doses of the lens and thyroid in patients treated by stereotactic radiosurgery, using a systematic plan in a humanoid phantom. Materials and Methods : Six isocenters were selected and radiosurgery was planned using the stereotactic radiosurgery system which the Department of Therapeutic Radiology at Seoul National University College of Medicine developed. The experimental radiosurgery plan consisted of 6 arc planes per one isocenter, 100 degrees for each arc range and an accessory collimator diameter size of 2 cm. After 250 cGy of irradiation from each arc, the doses absorbed at the lens and thyroid were measured by thermoluminescence dosimetry. Results : The lens dose was 0.23$\pm$0.08$\%$ of the maximum dose for each isocenter when the exit beam did not pass through the lens and was 0.76$\pm$0.12$\%$ of the maximum dose for each isocenter when the exit beam passed through the lens. The thyroid dose was 0.18$\pm$0.05$\%$ of the maximum dose for each isocenter when the exit beam did not pass through the thyroid and was 0.41$\pm$0.04$\%$ of the maximum dose for each isocenter when the exit beam Passed through the thyroid. The passing of the exit beam is the most significant factor of organ dose and the absorbed dose by an arc crossing organ decides 80$\%$ of the total dose. The absorbed doses of the lens and thyroid were larger as the isocenter sites and arc planes were closer to each organ. There were no differences in the doses at the surface and 5 mm depth from the surface in the eyelid and thyroid areas. Conclusion : As the isocenter and arc plane were placed closer to the lens and thyroid, the doses increased. Whether the exit beams passed through the lens or thyroid greatly influenced the lens and thyroid dose. The surface dose of the lens and thyroid consistently represent the tissue dose. Even when the exit beam passes through the lens and thyroid, the doses are less than 1$\%$ of the maximum dose and therefore, are too low to evoke late complications, but nevertheless, we should try to minimize the thyroid dose in children, whenever possible.

  • PDF

A Comparative Evaluation of Organ Doses in Infants and toddlers between Axial and Spiral CT Scanning (축방향 CT 스캔과 나선형 CT 스캔에서 영·유아의 장기흡수선량 비교 평가)

  • Kim, Sangtae;Eun, Sungjong;Kim, Sunggil
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.2
    • /
    • pp.137-143
    • /
    • 2013
  • This study presents comparison results between axial and spiral scanning in the head and chest region with 64 MDCT to evaluate organ doses in infants and toddlers, who are more radiosensitive to radiation than adults and rise in the number of CT examinations, during CT scanning. Organ doses were significantly lower in spiral scanning than axial scanning regardless of scanned regions. The average organ dose for the chest scan using pitch of 1.355 was found to be significantly higher(average -12.03%) than for the other two pitch settings(0.525 and 0.988) in the spiral scanning mode compared with the axial one. Organ doses in the spiral scanning mode were lower by average 20.54% than the axial scanning mode. The results of the study that evaluated organ doses with an anthropomorphic phantom will help to demonstrate the result values of Monte Carlo simulations and make a contribution to more accurate evaluations of organ doses in toddlers undergoing a CT examination.

A Study on the Radiation Exposure Dose of Brain Perfusion CT Examination a Phantom (Phantom을 이용한 뇌 관류 CT검사에서 방사선 피폭선량에 관한 연구)

  • Jung, Hong-Rynag;Kim, Ki-Jeong;Mo, Eun-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.5
    • /
    • pp.287-294
    • /
    • 2015
  • The purpose of this study, was Let's examine the exposure dose at the time of cerebral blood flow CT scan of acute ischemic stroke patients. In particular, long-term high doses of radiation sensitive organs and we Measured using phantom and a glass dosimeter. Apply the existing protocol suggested by the manufacturer (fixed time delay technique) and the proposed new convergence protocol (bolus tracking technique), reporting to measure the dose, dose reduction was to prepare the way. Results up to 39.8% as compared to the existing protocols in a new suggested convergence protocol, a minimum of 5.8% was long-term dose is reduced. Test dose of $CDTI_{vol}$ and DLP values decreased 25%, respectively, were measured at less than recommended dose. Try checking the protocol set out in the existing based on the analysis result of the above, by applying the proposed new convergence protocol by reducing the dose would have to contribute to improved public health. It is believed to be research continues to find the optimum protocol in the other tests.

Modification of Trunk Thickness of MIRD phantom Based on the Comparison of Organ Doses with Voxel Phantom (체적소팬텀과의 장기선량 비교를 통한 MIRD팬텀 몸통두께 수정)

  • Lee, Choon-Sik;Park, Sang-Hyun;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.199-206
    • /
    • 2003
  • Because the MIRD phantom, the representative mathematical phantom was developed for the calculation of internal radiation dose, and simulated by the simplified mathematical equations for rapid computation, the appropriateness of application to external dose calculation and the closeness to real human body should be justified. This study was intended to modify the MIRD phantom according to the comparison of the organ absorbed doses in the two phantoms exposed to monoenergetic broad parallel photon beams of the energy between 0.05 MeV and 10 MeV. The organ absorbed doses of the MIRD phantom and the Zubal yokel phantom were calculated for AP and PA geometries by MCNP4C, general-purpose Monte Carlo code. The MIRD phantom received higher doses than the Zubal phantom for both AP and PA geometries. Effective dose in PA geometry for 0.05 MeV photon beams showed the difference up to 50%. Anatomical axial views of the two phantoms revealed the thinner trunk thickness of the MIRD phantom than that of the Zubal phantom. To find out the optimal thickness of trunk, the difference of effective doses for 0.5 MeV photon beams for various trunk thickness of the MIRD phantom from 20 cm to 36 cm were compared. The optimal thunk thickness, 24 cm and 28 cm for AP and PA geometries, respectively, showed the minimum difference of effective doses between the two phantoms. The trunk model of the MIRD phantom was modified and the organ doses were recalculated using the modified MIRD phantom. The differences of effective dose for AP and PA geometries reduced to 7.3% and the overestimation of organ doses decreased, too. Because MIRD-type phantoms are easier to be adopted in Monte Carlo calculations and to standardize, the modifications of the MIRD phantom allow us to hold the advantage of MIRD-type phantoms over a voxel phantom and alleviate the anatomical difference and consequent disagreement in dose calculation.

Evaluation on Organ Dose and Image Quality by Changing kVp and Ion Chamber Combination while Taking Digital Chest Lateral Decubitus PA Projection (디지털 흉부 측와위 후전방향 검사 시 Ion chamber조합 설정과 관전압 변화에 따른 장기선량 및 화질 평가)

  • Lee, Jin-Soo;Park, Hyong-Hu
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.1
    • /
    • pp.316-323
    • /
    • 2015
  • In this study, we analyzed radiation dose and MTF with setting of Ion chamber and changing kVp so that we are able to suggest acquiring optimized diagnostic images and minimizing patient dose. we assumed right lateral decubitus position among chest decubitus projection and set 7 combination of Ion chamber. By changing kVp(100, 110, 120, 130kVp), we exposed x-ray five times respectively and calculated average value after measuring entrance dose. we input the entrance dose value to PCXMC Monte carlo simulation tool and calculated organ dose and effective dose. Then we did physical image evaluation with MTF for the purpose to compare image quality. As a result, the high kVp, entrance dose is reduced. As change of ion chamber, when selecting second ion chamber, both organ dose and effective dose were the lowest. In contrast, selecting first ion chamber was the highest. MTF is superior to set second Ion chamber and using 120 kVp. Consequently, when taking chest right lateral decubitus using Digital radiography, the optimized combination which have both reducing dose efficiently without declining image quality and aquring good qualified image is set 120 kVp and selecting second Ion chamber.

폐암 세기변조방사선치료 시 최적화된 조사계획 설정과 가상 장기 설정에 관한 연구

  • Lee, Seok;Lee, Chang-Geol;Cho, Sam-Ju;Chu, Sung-Sil;Lee, Sang-Hoon;Choi, Myung-Sun;Kim, Chul-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.34-34
    • /
    • 2003
  • 목적 : 폐암 환자 세기변조방사선치료 과정을 소개하고, 방사선치료계획의 최적화를 위한 빔 수와 방향, 가상장기 설정 (virtual organ delineation, VOD) 및 선량 제한 인자들의 이용에 대해 평가함으로써 폐, 심장 등에 조사되는 선량을 최소화하는데 사용하는 세기변조방사선치료 (intensity modulated radiotherapy, IMRT) 기술의 유용성을 평가하고자한다. 대상 및 방법 : 종양이 종격동을 침범하여 상대적으로 장기움직임에 의한 오차가 적은 폐암환자 5 명을 대상으로 하였다. 환자고정장치는 상반신을 편안하게 유지함과 동시에 팔의 위치를 고정시킴으로써 기대할 수 있는 환자고정효과와 벨트를 이용하여 환자 상복부를 압박해줌으로써 호흡운동에 의한 장기 움직임을 감소시킬 수 있는 형태로 고안하였다. 치료계획시 빔 수와 방향은 5,7,9 문 (from 200 to 160, equispaced field, arbitrary field), 4 문 (anterior, posterior, bilateral posterior oblique field) 과 비등방 7, 9 문 (non-equispaced field, arbitrary field) 등을 사용하였다. 선량제한 ($V_{20}V_{25}$)은 문헌에 기초하여 설정하였으며, 가상장기를 적절히 사용하여 최적화된 치료계획 결과를 얻었다. 방사선치료계획 평가는 선량-체적간 히스토그람 (DVH), 등선량곡선 및 선량통계 등을 이용하여 수행하였다. 특히 가상장기 설정 전, 후의 결과 값을 분석함으로써 그 유용성을 확인하였다. 결과 : 9문 등방-IMRT와 7문 비등방-IMRT 방법이 치료계획용적의 선량균질성 (PTV dose homogeneity), 평균 폐선량 (mean lung dose) 및 $V_{20}V_{25}$ 모두에서 20% 이내의 좋은 결과를 얻을 수 있었고, 가상 장기를 설정함으로써 같은 결과를 가져옴을 알 수 있었다. 또한 폐암 세기변조방사선치료 프로토콜을 작성하여 임상에 사용함으로써 치료과정 중 발생할 수 있는 오류를 보완할 수 있음을 알 수 있었다. 결론 : 폐암 세기변조방사선치료 시 사용할 수 있는 프로토콜을 작성하였고, 적절한 가상 장기 및 조사계획 설정으로 치료계획의 최적화를 얻을 수 있음을 알 수 있었다.

  • PDF