DOI QR코드

DOI QR Code

Piezoelectric and Dielectric Properties of NKN-(1-x)BNT-xBT Ceramics

NKN-(1-x)BNT-xBT 세라믹스의 압전 및 유전특성

  • Lee, Seung-Hwan (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Nam, Sung-Pill (Department of Ceramic Engineering, Gyeongsang National University) ;
  • Lee, Sung-Gap (Department of Ceramic Engineering, Gyeongsang National University) ;
  • Lee, Young-Hie (Department of Electronic Materials Engineering, Kwangwoon University)
  • 이승환 (광운대학교 전자재료공학과) ;
  • 남성필 (경상대학교 세라믹공학과) ;
  • 이성갑 (경상대학교 세라믹공학과) ;
  • 이영희 (광운대학교 전자재료공학과)
  • Received : 2010.08.11
  • Accepted : 2010.09.17
  • Published : 2010.10.01

Abstract

In this study, piezoelectric and dielectric properties of the $(Na_{0.5}K_{0.5})NbO_3-(1-x)(Bi_{0.5}Na_{0.5})TiO_3-xBaTiO_3$ [NKN-(1-x)BNT-xBT] ceramics were investigated. The lead-free NKN-(1-x)BNT-xBT ceramics were fabricated by a conventional mixed oxide method. The results indicate that the addition of $BaTiO_3$ significantly influences the sintering, microstructure, phase transition and electrical properties of NKN-BNT ceramics. A gradual change in the piezoelectric and dielectric properties was observed with the increase of BT contents. The dielectric constant, piezoelectric constant ($d_{33}$) and electromechanical coupling factor ($k_p$) increased at the morphotropic phase boundary (MPB). The $d_{33}$=184 pC/N, $k_p$=0.38, dielectric constant=1455 with dielectric loss value of less than 1% were obtained for the NKN-0.95BNT-0.05BT ceramics sintered at $1150^{\circ}C$ for 2h. These results demonstrate that the NKN-(1-x)BNT-xBT ceramics is an attractive candidate for lead-free piezoelectric materials.

Keywords

References

  1. H. Abicht, D. Voltzke, and H. Schmidt, Chem. Phys. 51, 35 (1997).
  2. R. Xu, M. Shen, S. Ge, Z. Gan, and W. Cao, Thin Solid Films, 406, 113 (2002). https://doi.org/10.1016/S0040-6090(02)00050-0
  3. Ya. I. Alivov, F. Agara, B. Xiao, S. Chevtchenko, H. Morkoc, and J. G. Yoon, J. Korean Phys. Soc. 53, 1982 (2008). https://doi.org/10.3938/jkps.53.1982
  4. J. G. Yoon, K. O. Jung, H. J. Kim, and K. S. Kim, J. Korean Phys. Soc. 53, 2033 (2008). https://doi.org/10.3938/jkps.53.2033
  5. P.-H. Xiang, H. Takeda, and T. Shiosaki, Appl. Phys. Lett. 91, 162 (2008).
  6. K.-T. Kim, C.-I. Kim, and S.-G. Lee, Microelectron. Eng. 66, 662 (2003). https://doi.org/10.1016/S0167-9317(02)00980-2
  7. H. Takeda, W. Aoto, and T. Shiosaki, Appl. Phys. Lett. 87, 102 (2005).
  8. X. X. Wang, H. L. W. Chan, and C. L. Choy, Solid State Commun. 125, 395 (2003). https://doi.org/10.1016/S0038-1098(02)00816-5
  9. H. Nagata, M. Yoshida, Y. Makiuchi, and T. Takenaka, Jpn. J. Appl. Phys. 42, 7401 (2003). https://doi.org/10.1143/JJAP.42.7401
  10. C. Peng, J. F. Li, and W. Gong, Mater. Lett. 59, 1576 (2005). https://doi.org/10.1016/j.matlet.2005.01.026
  11. B. J. Chu, D. R. Chen, G. R. Li, and Q. R. Yin, J. Eur. Ceram. Soc. 22, 2115 (2005).

Cited by

  1. Classification of Organs Using Impedance of Ultrasonic Surgical Knife to improve Surgical Efficiency vol.34, pp.3, 2013, https://doi.org/10.9718/JBER.2013.34.3.141