플립 칩 패키지 솔더의 탄소성 거동과 크립 해석

Elastoplastic Behavior and Creep Analysis of Solder in a FC-PBGA Package

  • Choi, Nam-Jin (Department of Mechanical Engineering, Chungbuk National University) ;
  • Lee, Bong-Hee (Department of Mechanical Engineering, Chungbuk National University) ;
  • Joo, Jin-Won (Department of Mechanical Engineering, Chungbuk National University)
  • 투고 : 2010.05.18
  • 심사 : 2010.06.03
  • 발행 : 2010.06.30

초록

본 논문에서는 온도 사이클이 진행되는 동안 비선형 거동과 크립 거동을 보이는 FC-PBGA 패키지 솔더볼의 변형거동을 알아보기 위하여 시간에 종속하는 거동을 적용 시킬 수 있는 점소성 모델과 크립 모델에 대하여 유한요소해석을 수행하였다. 유한요소해석 결과의 신뢰성을 평가하기 위하여 무아레 간섭계를 이용하여 온도변화에 따른 열변형 실험을 수행하였다. 전체적인 굽힘변위는 Anand 모델과 변형률 분리 모델 모두 실험결과와 잘 일치하였으나 솔더볼의 변형률은 Anand 모델의 경우 큰 차이를 보이고 변형률 분리 모델의 경우 상당히 일치하는 계산결과를 얻었다. 따라서 본 논문에서는 변형률 분리 모델을 이용하여 시간에 종속하는 FC-PBGA 패키지 솔더볼의 크립 거동을 검토하였다. 솔더를 포함한 패키지에 온도변화가 생길 때 고온에서는 시간이 지남에 따라 크립 거동에 의해 솔더의 응력이 점차 완화되는 현상을 나타내고 있음을 알 수 있었다.

Creep behaviors of the solder balls in a flip chip package assembly during thermal cycling test is investigated.. A material models used in the finite element analysis are viscoplastic model introduced by Anand and creep model called partitioned model. Experiment of two temperature cycles using moir$\acute{e}$ interferometry is conducted to verify the reliability of material models for the analysis of thermo-mechanical behavior. Bending deformations of the assemblies and average strains of the solder balls due to temperature change and dwell time are investigated. The results show that time-dependent shear strain of solder by the partitioned model is in excellent agreement with those by moir$\acute{e}$ interferometry, while there is considerable difference between results by Anand model and experiment. In this paper, the partitioned model is employed for the time-dependent creep analysis of the FC-PBGA package. It is also shown that the thermo-mechanical stress becomes relaxed by creep behavior at high temperature during temperature cycles.

키워드

참고문헌

  1. J. S. Corbin, "Finite Element Analysis for Solder Ball Connect(SBC) Structural design Optimization", IBM J. Research Development, 37(5), 585 (1993). https://doi.org/10.1147/rd.375.0585
  2. T. Lee and L. Jung, "Finite Element Analysis for Solder Ball Failures in Chip Scale Packages", Microelectronics and Reliability, 38(2), 1941 (1998). https://doi.org/10.1016/S0026-2714(98)00163-2
  3. S. C. Chen, Y. C. Lin and C. H. Cheng, "The Numerical Analysis of Strain Behavior at the Solder Joint and Interface in a Flip Chip Package", J. Materials Processing Technology, 171(1), 125 (2006). https://doi.org/10.1016/j.jmatprotec.2005.06.061
  4. J. W. Joo and N. J. Choi, "The Effect of Finite Element Models in Thermal Analysis of Electronic Packages", Trans. of the KSME(A), 33(4), 380 (2009). https://doi.org/10.3795/KSME-A.2009.33.4.380
  5. B. Han, "Recent Advancements of Moire and Microscopic MoireInterferometry for Thermal Deformation Analysis of Microelectronics Devices", Experimental Mechanics, 38(4), 278 (1998).
  6. J. W. Joo, "Thermo-mechanical Behavior of Wire Bonding PBGA Packages with Different Sdder Ball Grid Patterns", J. Microelectron Packag. Soc., 16(2), 11 (2009).
  7. S. M. Cho. S. Y. Cho and B. Han, "Observing Real-Time Thermal Deformations in Electronic Packaging", Experimental Techniques, 26(3), 25 (2002). https://doi.org/10.1111/j.1747-1567.2002.tb00065.x
  8. S. J. Ham and S. B. Lee, "Measurement of Creep and Relaxation Behaviors of Wafer-level CSP Assembly Using Moire Interferometry", J. Electronic Packaging, Trans. of the ASME, 125(2), 282 (2003). https://doi.org/10.1115/1.1571571
  9. J. W. Joo, S. Cho and B. Han, "Characterization of Flexural and Thermo- mechanical Behavior of Plastic Ball Grid Array Package Assembly Using Moire Interferometry", Micrelectronics Reliability, 45(4), 637 (2005). https://doi.org/10.1016/j.microrel.2004.10.006
  10. D. Pollack and B. Han, "Experimental Validation of Unified Constitutive Model of Eutectic Solder", Proc. of Society for Experimental Mechanics (2003).
  11. J. W. Joo and D. H. Kim, "Thermo-mechanical Deformation Analysis of Flip Chip PBGA Packages subjected to Temperature Change", J. Microelectron. Packag. Soc., 13(4), 17 (2006).
  12. L. Anand, "Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated Tempertures", ASME Journal of Engineering Material Technology, 104(1), 12 (1982). https://doi.org/10.1115/1.3225028
  13. E. Madenci, I. Guven and B. Kilic, Fatigue Life Predictions of Solder Joints in Electronic Packagrs with ANSYS, Kluwer Academic Publishers (2003).
  14. F. Feustel, S. Wiese and E. Meusel, "Time-Dependent Material Modeling for Finite Element Analyses of Flip Chips", Proc. Electronic Components and Technology Conference, IEEE (2000).
  15. J. Kang, N. Choi, J. Won, J. Choi and J. Joo, "An Inverse approach for material characterization of lead-free solder in Accelerated Thermal Cycling test of microelectronics package", 5th China-Japan-Korea Joint Symposium on optimization of structural and mechanical systems (2008).