• Title/Summary/Keyword: FC-PBGA package

Search Result 5, Processing Time 0.022 seconds

The Effect of Finite Element Models in Thermal Analysis of Electronic Packages (반도체 패키지의 열변형 해석 시 유한요소 모델의 영향)

  • Choi, Nam-Jin;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.380-387
    • /
    • 2009
  • The reliability concerns of solder interconnections in flip chip PBGA packages are produced mainly by the mismatch of coefficient of thermal expansion(CTE) between the module and PCB. Finite element analysis has been employed extensively to simulate thermal loading for solder joint reliability and deformation of packages in electronic packages. The objective of this paper is to study the thermo-mechanical behavior of FC-PBGA package assemblies subjected to temperature change, with an emphasis on the effect of the finite element model, material models and temperature conditions. Numerical results are compared with the experimental results by using $moir{\acute{e}}$ interferometry. Result shows that the bending displacements of the chip calculated by the finite element analysis with viscoplastic material model is in good agreement with those by $moir{\acute{e}}$ inteferometry.

Elastoplastic Behavior and Creep Analysis of Solder in a FC-PBGA Package (플립 칩 패키지 솔더의 탄소성 거동과 크립 해석)

  • Choi, Nam-Jin;Lee, Bong-Hee;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.21-28
    • /
    • 2010
  • Creep behaviors of the solder balls in a flip chip package assembly during thermal cycling test is investigated.. A material models used in the finite element analysis are viscoplastic model introduced by Anand and creep model called partitioned model. Experiment of two temperature cycles using moir$\acute{e}$ interferometry is conducted to verify the reliability of material models for the analysis of thermo-mechanical behavior. Bending deformations of the assemblies and average strains of the solder balls due to temperature change and dwell time are investigated. The results show that time-dependent shear strain of solder by the partitioned model is in excellent agreement with those by moir$\acute{e}$ interferometry, while there is considerable difference between results by Anand model and experiment. In this paper, the partitioned model is employed for the time-dependent creep analysis of the FC-PBGA package. It is also shown that the thermo-mechanical stress becomes relaxed by creep behavior at high temperature during temperature cycles.

Thermo-mechanical Deformation Analysis of Filu Chip PBGA Packages Subjected to Temperature Change (Flip Chip PBGA 패키지의 온도변화에 대한 변형거동 해석)

  • Joo, Jin-Won;Kim, Do-Hyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.17-25
    • /
    • 2006
  • Thermo-mechanical behavior of flip-chip plastic ball grid array (FC-PBGA) packages are characterized by high sensitive $moir\'{e}$ interferometry. $Moir\'{e}$ fringe patterns are recorded and analyzed for several temperatures. Deformation analysis of bending displacements of the packages and average strains in the solder balls for both single and double-sided package assemblies are presented. The bending displacement of the double-sided package assembly is smaller than that of the single-sided one because of its symmetric structure. The largest effective strain occurred at the solder ball located on the edge of the chip and its magnitude of the double-sided package assembly is greater than that of single-sided one by 50%.

  • PDF

Thermo-mechanical Analysis of Filp Chip PBGA Package Using $Moir\acute{e}$ Interferometry (모아레 간섭계를 이용한 Flip Chip PBGA 패키지의 온도변화에 대한 거동해석)

  • Kim, Do-Hyung;Choi, Yong-Seo;Joo, Jin-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1027-1032
    • /
    • 2003
  • Thermo-mechanical behavior of flip-chip plastic ball grid array (FC-PBGA) packages are characterized by high sensitive $Moir{\acute{e}}$ interferometry. $Moir{\acute{e}}$ fringe patterns are recorded and analyzed for several temperatures. Deformation analysis of bending displacements of the packages and average strains in the solder balls for a single-sided package assembly and a double-sided package assembly are presented. The bending displacement of the double-sided package assembly is smaller than that of the single-sided one. The largest of effective strain occurred in the solder ball located at the edge of the chip and its magnitude of the double-sided package assembly is greater than that of single-sided one.

  • PDF

A Study on the Improvement of Solder Joint Reliability for 153 FC-BGA (153 FC-BGA에서 솔더접합부의 신뢰성 향상에 관한 연구)

  • 장의구;김남훈;유정희;김경섭
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.3
    • /
    • pp.31-36
    • /
    • 2002
  • The 2nd level solder joint reliability of 153 FC-BGA for high-speed SRAM (Static Random Access Memory) with the large chip on laminate substrate comparing to PBGA(Plastic Ball Grid Array) was studied in this paper. This work has been done to understand an influence as the mounting with single side or double sides, structure of package, properties of underfill, properties and thickness of substrate and size of solder ball on the thermal cycling test. It was confirmed that thickness of BT(bismaleimide tiazine) substrate increased from 0.95 mm to 1.20 mm and solder joint fatigue life improved about 30% in the underfill with the low young's modulus. And resistance against the solder ball crack became twice with an increase of the solder ball size from 0.76 mm to 0.89 mm in solder joints.

  • PDF