DOI QR코드

DOI QR Code

Development of a Ultra Broadband Optical Coupler Based on a Photonic Crsytal Fiber

광자결정 광섬유기반 광신호 분배기 개발

  • Received : 2010.08.24
  • Accepted : 2010.10.13
  • Published : 2010.10.25

Abstract

A broadband optical coupler with a broad bandwidth of 1000 nm based on a photonic crystal fiber (PCF) is investigated. The PCF has 6 layers of air hole structures and a diameter of $130{\mu}m$. The PCF-based coupler is fabricated by using a fused biconical tapering method based on heating and elongation processes. Changing temperature and an elongation length can control the bandwidth and the bandedge wavelength of the PCF-based broadband coupler. The diameter of the fused region in the PCF-based coupler was measured to be $23{\mu}m$. The fabricated PCF-based coupler has a nearly-flat coupling ration of 3-dB in a broad bandwidth of 1000 nm, which is wider than that of the previously reported PCF-based coupler and that of the single-modefiber-based coupler. Since the resolution of optical coherence tomography system is proportional to the bandwidths of both an optical light sources and an interferometer, the fabricated PCF-based broadband optical coupler has a great potential for realization of a broadband interferogram.

본 논문에서는 광자결정 광섬유를 이용하여 1000 nm 의 광대역폭을 갖는 광신호 분배기를 구현하였다. 제작에 사용된 광자결정 광섬유의 지름은 $130{\mu}m$ 이고 6층의 공기 구멍 구조로 이루어져 있다. 광신호 분배기는 두 가닥의 광자결정 광섬유에 열을 가함과 동시에 인장력을 가해 제작하였으며 제작된 광자결정 광섬유 기반 광신호 분배기의 지름은 $23{\mu}m$ 이었다. 광신호 분배기의 제작 시 인장시키는 길이에 따라 대역폭과 bandedge가 조절되었다. 제작된 광자결정 광섬유 기반 광신호 분배기의 대역폭이 1000 nm에서 50:50의 광신호 분해 효율을 가지는 것으로 측정되었다. 광자결정 광섬유의 공기 구멍 구조의 특성으로 인해 주변온도의 변화에 영향을 받지 않는 특성을 나타낸다. Optical coherence tomography의 분해능이 광원의 대역폭에 비례하므로 광대역폭을 갖는 광자결정 광섬유 기반 광신호 분배기는 신호 추출을 위한 간섭계 구성에 핵심적으로 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997). https://doi.org/10.1364/OL.22.000961
  2. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Groupvelocity dispersion in photonic crystal fibres,” Opt. Lett. 23, 1662-1664 (1998). https://doi.org/10.1364/OL.23.001662
  3. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395-1397 (1999). https://doi.org/10.1364/OL.24.001395
  4. C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535-2537 (2004). https://doi.org/10.1109/LPT.2004.835646
  5. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415-1417 (2000). https://doi.org/10.1364/OL.25.001415
  6. J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, “Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure,” Opt. Lett. 29, 331-333 (2004). https://doi.org/10.1364/OL.29.000331
  7. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kirn, and B. H. Lee, “Mach–Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett. 29, 346-348 (2004). https://doi.org/10.1364/OL.29.000346
  8. G. H. Kim, T. Y. Cho, K. J. Hwang, K. I. Lee, K. S. Lee, Y. G. Han, and S. B. Lee, “Strain and temperature sensitivities of an elliptical hollow-core photonic bandgap fiber based on sagnac interferometer,” Opt. Express 17, 2481-2486 (2009). https://doi.org/10.1364/OE.17.002481
  9. D. Marcuse, Theory of Dielectric Optical Waveguide, 2nd ed., (Academic Press, New York, USA, 1991), Chapter 3.
  10. N. A. Mortensen, “Effective area of photonic crystal fiber,” Opt. Express 10, 341-348 (2002). https://doi.org/10.1364/OE.10.000341
  11. H. Kim, J. Kim, U. C. Paek, and B. H. Lee, “Tunable photonic crystal fiber coupler based on a side-polishing technique side-polishing technique,” Opt. Lett. 29, 1194-1196 (2004). https://doi.org/10.1364/OL.29.001194