DOI QR코드

DOI QR Code

Numerical Simulation of Solitary Wave Run-up with an Internal Wave-Maker of Navier-Stokes Equations Model

내부조파기법을 활용한 Navier-Stokes 방정식 모형의 고립파 처오름 수치모의

  • 하태민 (한양대학교 일반대학원 건설환경공학과) ;
  • 김형준 (한양대학교 일반대학원 건설환경공학과, 한국건설기술연구원 하천.해안항만연구실) ;
  • 조용식 (한양대학교 공과대학 건설환경공학과)
  • Received : 2010.07.10
  • Accepted : 2010.08.24
  • Published : 2010.09.30

Abstract

A three-dimensional numerical model called NEWTANK is employed to investigate solitary wave run-up with an internal wave-maker on a steep slope. The numerical model solves the spatially averaged Navier-Stokes equations for two-phase flows. The LES (large-eddy-simulation) approach is adopted to model the turbulence effect by using the Smagorinsky SGS (sub-grid scale) closure model. A two-step projection method is adopted in numerical solutions, aided by the Bi-CGSTAB (Bi-Conjugate Gradient Stabilized) method to solve the pressure Poisson equation for the filtered pressure field. The second-order accurate VOF (volume-of-fluid) method is used to track the distorted and broken free surface. A solitary wave is first internally generated and propagated over a constant water depth in the three-dimensional domain. Numerically predicted results are compared with analytical solutions and numerical errors are analyzed in detail. The model is then applied to study solitary wave run-up on a steep slope and the obtained results are compared with available laboratory measurements.

급경사에서의 고립파의 처오름을 예측하기 위해 3차원 수치모형에 내부조파기법을 도입하여 수치모형실험을 수행하였다. 수치모형은 Navier-Stokes 방정식을 유한차분법을 이용하여 계산하는 동수압 모형으로서, 난류의 해석을 위해서 상대적으로 큰 에디(eddy)만을 고려하는 SANS(spatially averaged Navier-Stokes) 방정식을 푸는 LES(large-eddy-simulation) 기반의 수치모형을 사용한다. 엇갈림 격자체계에서 유한차분법을 사용하여 지배방정식을 해석하는 모형으로서 수치기법으로 Two-step projection 기법을 사용하여 SANS 방정식을 풀었으며, Poisson 방정식을Bi-CGSTAB 기법을 이용하여 풀고 압력장을 계산하였다. 또한, 자유수면의 추적을 위하여 2차 정확도의 VOF(volume-of-fluid) 기법을 사용하였다. 먼저 고립파를 3차원 공간의 일정 수심상에서 내부조파하여 해석해와 비교한 후 분산오차에 대해 분석하였다. 그리고 고립파를 내부조파하여 급경사에서의 고립파의 처오름 및 처내림 현상을 예측하고 수리모형 실험결과와 비교 및 분석하였다.

Keywords

References

  1. Berkhoff, J.C.W(1972). “Computation of combined refraction-diffraction.” Proceedings of 13th International Conference on Coastal Engineering, ASCE, New York, pp. 471-490.
  2. Casulli, V. (1999). “A semi-implicit finite difference method for non-hydrostatic, free-surface flows.” International Journal for Numerical Methods in Fluids, Vol. 30, pp. 425-440. https://doi.org/10.1002/(SICI)1097-0363(19990630)30:4<425::AID-FLD847>3.0.CO;2-D
  3. Chen, X. (2003). “A fully hydrodynamic model for three-dimensional, free-surface flows.” International Journal for Numerical Methods in Fluids, Vol. 42, No. 9, pp. 929-952. https://doi.org/10.1002/fld.557
  4. Choi, J.W., and Yoon, S.B. (2009). “Numerical simulation using momentum source wave-maker applied RANS equation model.” Coastal Engineering, Vol. 56, pp. 1043-1060. https://doi.org/10.1016/j.coastaleng.2009.06.009
  5. Chorin, A.J. (1968). “Numerical solution of the Navier-Stokes equations.” Mathematics of Computation, Vol. 22, pp. 745-762. https://doi.org/10.1090/S0025-5718-1968-0242392-2
  6. Chorin, A.J. (1969). “On the convergence of discrete approximations of the Navier-Stokes equations.” Mathematics of Computation, Vol. 23, pp. 341-353. https://doi.org/10.1090/S0025-5718-1969-0242393-5
  7. Deardorff, J.W. (1970). “A numerical study of threedimensional turbulent channel flow at large Reynolds numbers.” Journal of Fluid Mechanics, Vol. 41, pp. 453-480. https://doi.org/10.1017/S0022112070000691
  8. Garcia, N., Lara, J.L., and Losada, I.J. (2004). “2-D numerical analysis of near-field flow at low-crested permeable breakwaters.” Coastal Engineering, Vol. 51, pp. 991-1020. https://doi.org/10.1016/j.coastaleng.2004.07.017
  9. Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., and Zaleski, S. (1999). “Volume-of-fluid interface tracking with smoothed surface stress methods for threedimensional flows.” Journal of Computational Physics, Vol. 152, pp. 423-456. https://doi.org/10.1006/jcph.1998.6168
  10. Lara, J.L., Garcia, N., and Losada, I.J., (2006). “RANS modelling applied to random wave interaction with submerged permeable structures.” Coastal Engineering, Vol. 53, pp. 396-417.
  11. Lee, C.H., Cho, Y.-S., and Yum, K. (2001). “Internal generation of waves for extended Boussinesq equations.” Coastal Engineering, Vol. 42, pp. 155-162. https://doi.org/10.1016/S0378-3839(00)00056-9
  12. Lee, C.H., and Suh, K.D. (1998). “Internal generation of waves for time-dependent mild-slope equations.” Coastal Engineering, Vol. 34, pp. 35-57. https://doi.org/10.1016/S0378-3839(98)00012-X
  13. Li, B. (2008). “A 3-D model based on Navier-Stokes equations for regular and irregular water wave propagation.” Ocean Engineering, Vol. 35, pp. 1842-1853. https://doi.org/10.1016/j.oceaneng.2008.09.006
  14. Lin, P., Chang K.A., Liu, P.L.-F (1999). “Runup and rundown of solitary waves on sloping beaches.” Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 125, pp. 247-255. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:5(247)
  15. Lin, P., and Karunarathna, S.A.S. (2007). “Numerical study of solitary wave interaction with porous breakwaters.” Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 133, No. 5, pp. 352-363. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:5(352)
  16. Lin, P., and Li, C.W. (2002). “A sigma-coordinate three-dimensional numerical model for surface wave propagation.” International Journal for Numerical Methods in Fluids, Vol. 38, pp. 1045-1068. https://doi.org/10.1002/fld.258
  17. Lin, P., and Liu, P.L.-F. (1998). “A numerical study of breaking waves in the surf zone.” Journal of Fluid Mechanics, Vol. 359, pp. 239-264. https://doi.org/10.1017/S002211209700846X
  18. Lin, P., and Liu, P.L.-F (1999). “Internal wave-maker for Navier-Stokes equations models.” Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 125, pp. 207-215. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:4(207)
  19. Liu, D. (2007). Numerical modeling of three-dimensional water waves and their interaction with structures, Ph.D. Dissertation, National University of Singapore, Singapore.
  20. Liu, D., and Lin, P. (2008). “A numerical study of three-dimensional liquid sloshing in tanks.” Journal of Computational Physics, Vol. 227, No. 8, pp. 3921-3939 https://doi.org/10.1016/j.jcp.2007.12.006
  21. Liu, P.L.-F., and Cho, Y.-S. (1994). “An integral equation model for wave propagation with bottom frictions.” Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 120, pp. 594-608. https://doi.org/10.1061/(ASCE)0733-950X(1994)120:6(594)
  22. Mahadevan, A., Oliger, J., and Street, R. (1996). “A non-hydrostatic mesoscale ocean model. Part 1: well posedness and acaling.” Journal of Physics and Oceanography, Vol. 26, pp. 1868-1880. https://doi.org/10.1175/1520-0485(1996)026<1868:ANMOMP>2.0.CO;2
  23. Nwogu, O. (1993). “Alternative form of Boussinesq equations for nearshore wave propagation.” Journal of Waterway, Port, Coastal, Ocean Engineering, Vol. 119, pp. 618-638. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618)
  24. Peregrine, D.H. (1967). “Long waves on a beach.” Journal of Fluid Mechanics, Vol. 27, pp. 815-827. https://doi.org/10.1017/S0022112067002605
  25. Pope, S.B. (2000) Turbulent Flows. Cambridge University Press, New York, USA.
  26. Rider, W.J., and Kothe, D.B. (1998). “Reconstructing volume tracking.” Journal of Computational Physics, Vol. 141, pp. 112-152. https://doi.org/10.1006/jcph.1998.5906
  27. Smagorinsky, J. (1963). “General circulation experiments with the primitive equations: I. The basic equations.” Monthly Weather Review, Vol. 91, pp. 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  28. Van der Vorst, H.A. (2003). Iterative Krylov Methods for Large Linear Systems. Cambridge University Press, New York, USA.

Cited by

  1. A Study on Stable Generation of Tsunami in Hydraulic/Numerical Wave Tank vol.36, pp.5, 2016, https://doi.org/10.12652/Ksce.2016.36.5.0805
  2. Numerical Simulation for Run-up of Solitary Wave on Slopes vol.13, pp.6, 2013, https://doi.org/10.9798/KOSHAM.2013.13.6.393