References
- Berkhoff, J.C.W(1972). “Computation of combined refraction-diffraction.” Proceedings of 13th International Conference on Coastal Engineering, ASCE, New York, pp. 471-490.
- Casulli, V. (1999). “A semi-implicit finite difference method for non-hydrostatic, free-surface flows.” International Journal for Numerical Methods in Fluids, Vol. 30, pp. 425-440. https://doi.org/10.1002/(SICI)1097-0363(19990630)30:4<425::AID-FLD847>3.0.CO;2-D
- Chen, X. (2003). “A fully hydrodynamic model for three-dimensional, free-surface flows.” International Journal for Numerical Methods in Fluids, Vol. 42, No. 9, pp. 929-952. https://doi.org/10.1002/fld.557
- Choi, J.W., and Yoon, S.B. (2009). “Numerical simulation using momentum source wave-maker applied RANS equation model.” Coastal Engineering, Vol. 56, pp. 1043-1060. https://doi.org/10.1016/j.coastaleng.2009.06.009
- Chorin, A.J. (1968). “Numerical solution of the Navier-Stokes equations.” Mathematics of Computation, Vol. 22, pp. 745-762. https://doi.org/10.1090/S0025-5718-1968-0242392-2
- Chorin, A.J. (1969). “On the convergence of discrete approximations of the Navier-Stokes equations.” Mathematics of Computation, Vol. 23, pp. 341-353. https://doi.org/10.1090/S0025-5718-1969-0242393-5
- Deardorff, J.W. (1970). “A numerical study of threedimensional turbulent channel flow at large Reynolds numbers.” Journal of Fluid Mechanics, Vol. 41, pp. 453-480. https://doi.org/10.1017/S0022112070000691
- Garcia, N., Lara, J.L., and Losada, I.J. (2004). “2-D numerical analysis of near-field flow at low-crested permeable breakwaters.” Coastal Engineering, Vol. 51, pp. 991-1020. https://doi.org/10.1016/j.coastaleng.2004.07.017
- Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., and Zaleski, S. (1999). “Volume-of-fluid interface tracking with smoothed surface stress methods for threedimensional flows.” Journal of Computational Physics, Vol. 152, pp. 423-456. https://doi.org/10.1006/jcph.1998.6168
- Lara, J.L., Garcia, N., and Losada, I.J., (2006). “RANS modelling applied to random wave interaction with submerged permeable structures.” Coastal Engineering, Vol. 53, pp. 396-417.
- Lee, C.H., Cho, Y.-S., and Yum, K. (2001). “Internal generation of waves for extended Boussinesq equations.” Coastal Engineering, Vol. 42, pp. 155-162. https://doi.org/10.1016/S0378-3839(00)00056-9
- Lee, C.H., and Suh, K.D. (1998). “Internal generation of waves for time-dependent mild-slope equations.” Coastal Engineering, Vol. 34, pp. 35-57. https://doi.org/10.1016/S0378-3839(98)00012-X
- Li, B. (2008). “A 3-D model based on Navier-Stokes equations for regular and irregular water wave propagation.” Ocean Engineering, Vol. 35, pp. 1842-1853. https://doi.org/10.1016/j.oceaneng.2008.09.006
- Lin, P., Chang K.A., Liu, P.L.-F (1999). “Runup and rundown of solitary waves on sloping beaches.” Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 125, pp. 247-255. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:5(247)
- Lin, P., and Karunarathna, S.A.S. (2007). “Numerical study of solitary wave interaction with porous breakwaters.” Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 133, No. 5, pp. 352-363. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:5(352)
- Lin, P., and Li, C.W. (2002). “A sigma-coordinate three-dimensional numerical model for surface wave propagation.” International Journal for Numerical Methods in Fluids, Vol. 38, pp. 1045-1068. https://doi.org/10.1002/fld.258
- Lin, P., and Liu, P.L.-F. (1998). “A numerical study of breaking waves in the surf zone.” Journal of Fluid Mechanics, Vol. 359, pp. 239-264. https://doi.org/10.1017/S002211209700846X
- Lin, P., and Liu, P.L.-F (1999). “Internal wave-maker for Navier-Stokes equations models.” Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 125, pp. 207-215. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:4(207)
- Liu, D. (2007). Numerical modeling of three-dimensional water waves and their interaction with structures, Ph.D. Dissertation, National University of Singapore, Singapore.
- Liu, D., and Lin, P. (2008). “A numerical study of three-dimensional liquid sloshing in tanks.” Journal of Computational Physics, Vol. 227, No. 8, pp. 3921-3939 https://doi.org/10.1016/j.jcp.2007.12.006
- Liu, P.L.-F., and Cho, Y.-S. (1994). “An integral equation model for wave propagation with bottom frictions.” Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 120, pp. 594-608. https://doi.org/10.1061/(ASCE)0733-950X(1994)120:6(594)
- Mahadevan, A., Oliger, J., and Street, R. (1996). “A non-hydrostatic mesoscale ocean model. Part 1: well posedness and acaling.” Journal of Physics and Oceanography, Vol. 26, pp. 1868-1880. https://doi.org/10.1175/1520-0485(1996)026<1868:ANMOMP>2.0.CO;2
- Nwogu, O. (1993). “Alternative form of Boussinesq equations for nearshore wave propagation.” Journal of Waterway, Port, Coastal, Ocean Engineering, Vol. 119, pp. 618-638. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618)
- Peregrine, D.H. (1967). “Long waves on a beach.” Journal of Fluid Mechanics, Vol. 27, pp. 815-827. https://doi.org/10.1017/S0022112067002605
- Pope, S.B. (2000) Turbulent Flows. Cambridge University Press, New York, USA.
- Rider, W.J., and Kothe, D.B. (1998). “Reconstructing volume tracking.” Journal of Computational Physics, Vol. 141, pp. 112-152. https://doi.org/10.1006/jcph.1998.5906
- Smagorinsky, J. (1963). “General circulation experiments with the primitive equations: I. The basic equations.” Monthly Weather Review, Vol. 91, pp. 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
- Van der Vorst, H.A. (2003). Iterative Krylov Methods for Large Linear Systems. Cambridge University Press, New York, USA.
Cited by
- A Study on Stable Generation of Tsunami in Hydraulic/Numerical Wave Tank vol.36, pp.5, 2016, https://doi.org/10.12652/Ksce.2016.36.5.0805
- Numerical Simulation for Run-up of Solitary Wave on Slopes vol.13, pp.6, 2013, https://doi.org/10.9798/KOSHAM.2013.13.6.393