• Title/Summary/Keyword: internal wave-maker

Search Result 9, Processing Time 0.027 seconds

Internal Wave-Maker using Momentum Source Term of RANS Equation Model (RANS 방정식의 운동량 원천항을 이용한 내부조파)

  • Choi, Jun-Woo;Ko, Kwang-Oh;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.182-190
    • /
    • 2009
  • For RANS equation model using VOF scheme Lin and Liu (1999) developed internal wave-maker method to generate target wave trains by using designed mass source functions of the continuity equation. By using this method studies on various numerical wave experiments has been achieved without the problem caused by wave reflection due to an external wave-maker. In this study, the wave-maker method to generate target wave trains by using a momentum source function was proposed. The computational results obtained by applying the mass and momentum source functions into FLUENT were compared with each other. To see its applicability, the hydraulic experiment of Luth et al. (1994) were numerically simulated and their measurements are compared with the computations, and the vertical variations of computed results were shown and investigated.

Directional Wave Generation in the Navier-Stokes Equations Using the Internal Wave Maker (Navier-Stokes 방정식 모형의 경사지게 입사하는 파랑 내부조파)

  • Ha, Tae-Min;NamGung, Don;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.545-555
    • /
    • 2012
  • A numerical modeling has become increasingly popular and more important to the study of water waves with a rapid advancement of computer technology. However, different types of problems are induced during simulating wave motion. One of the key problems is re-reflection to a computation domain at the incident boundary. The internal wave generating-absorbing boundary conditions have been commonly used in numerical wave models to prevent re-reflection. For the Navier-Stokes equations model, the internal wave maker using a mass source function of the continuity equation has been used to generate various types of waves. Nonetheless, almost every numerical experiment is performed in two dimensions and only a few tests have been expanded to three dimensions. More recently, a momentum source function of the Boussinesq equations is applied to generate essentially directional waves in the three dimensional Navier-Stokes equations model. In this study, the internal wave maker using a momentum source function is employed to generate targeted linear waves in the three-dimensional LES model.

Numerical Simulation of Solitary Wave Run-up with an Internal Wave-Maker of Navier-Stokes Equations Model (내부조파기법을 활용한 Navier-Stokes 방정식 모형의 고립파 처오름 수치모의)

  • Ha, Tae-Min;Kim, Hyung-Jun;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.9
    • /
    • pp.801-811
    • /
    • 2010
  • A three-dimensional numerical model called NEWTANK is employed to investigate solitary wave run-up with an internal wave-maker on a steep slope. The numerical model solves the spatially averaged Navier-Stokes equations for two-phase flows. The LES (large-eddy-simulation) approach is adopted to model the turbulence effect by using the Smagorinsky SGS (sub-grid scale) closure model. A two-step projection method is adopted in numerical solutions, aided by the Bi-CGSTAB (Bi-Conjugate Gradient Stabilized) method to solve the pressure Poisson equation for the filtered pressure field. The second-order accurate VOF (volume-of-fluid) method is used to track the distorted and broken free surface. A solitary wave is first internally generated and propagated over a constant water depth in the three-dimensional domain. Numerically predicted results are compared with analytical solutions and numerical errors are analyzed in detail. The model is then applied to study solitary wave run-up on a steep slope and the obtained results are compared with available laboratory measurements.

Internal Wave Generation with Level Set Parallel Finite Element Approach (레블셋 병렬유한요소 기법을 이용한 파랑 내부 조파)

  • Lee, Haegyun;Lee, Nam-Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6B
    • /
    • pp.379-385
    • /
    • 2012
  • Recent development of computing power and theoretical advances in computational fluid dynamics have made possible numerical simulations of water waves with full Navier-Stokes equations. In this study, an internal wave maker using the mass source function approach was combined with the level set finite element method for generation of waves. The model is first applied to the two-dimensional linear wave generation and propagation. Then, it is applied to the three-dimensional simulation of the same problem. To effectively utilize computational resources and enhance the speed of execution, parallel algorithms are developed and applied for the three-dimensional problem. The results of numerical simulations are compared with theoretical values and good agreements are observed.

Internal Wave-Maker with the Level-Set Finite Element Approach (레블셋 유한요소 기법을 이용한 내부 조파)

  • Lee, Hae-Gyun;Lee, Nam-Joo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.181-184
    • /
    • 2012
  • 기존에 제시된 Lin 과 Liu (1999)의 VOF 기법을 이용한 내부 조파 방법을 레블셋 기법에 적용하였다. 기하학적으로 유리한 유한요소법을 이용하여, Navier-Stokes 방정식의 공간차분에는 Characteristic Galerkin 기법을, 시간차분에는 Fractional Four-Step 기법을 적용하였다. 그림에 보인 바와 같이 중심(x=0)에서 전파하는 경우, 외부조파에 의한 영역내 재반사 문제가 해결되어 선형파를 의도한 바대로 잘 조파할 수 있었다.

  • PDF

Study on Flow Characteristics in an Augmentation Channel of a Direct Drive Turbine for Wave Energy Conversion Using CFD

  • Prasad, Deepak;Kim, Chang-Goo;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.594-599
    • /
    • 2009
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Apart from wind and solar, ocean holds tremendous amount of untapped energy in forms such as geothermal vents, tides and waves. The current study looks at generating power using waves and the focus is on the primary energy conversion (first stage conversion) of incoming waves for different models. Observation of flow characteristics and the velocity in the augmentation channel as well as the front guide nozzle are presented in the paper. A numerical wave tank was used to simulate the waves and after obtaining the desired wave properties; the augmentation channel plus the front guide nozzle and rear chamber were integrated to the numerical wave tank. The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet. The inlet which was modeled as a plate wall moved sinusoidally with the general function, x=asin$\omega$t The augmentation channel consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. The analysis was performed using the commercial CFD code ANSYS-CFX.

  • PDF

Numerical Investigation on Surge Motion of a Rectangular Floating Body due to Inner Sloshing Phenomena (내부 슬로싱 현상에 따른 사각상자 형태의 부유체 서지 거동에 대한 수치적 고찰)

  • Ha, Minho;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.662-668
    • /
    • 2013
  • In this paper, possibility of controlling motion of a floating structure using a tuned liquid damper (TLD) is numerically investigated. A TLD is a tank partially filled with liquid. Sloshing motion of liquid inside a tank is known to suppress movement of the tank subject to external excitations at specific frequency. The effects of sloshing phenomena inside a rectangular floating body on its surge motion are investigated by varying external excitation frequency. First, a grid-refinement study is carried out to ensure validity of grid independent numerical solutions using present numerical techniques. Then, surge motion of the floating body subjected to external wave is simulated for five different excitation frequencies of which the center frequency equals to the natural frequency of internal liquid sloshing. The normalized amplitudes of surge motion of the target floating body are compared according to the excitation frequency, for the cases with and without water inside the floating body. It is shown that the motion of the floating body can be minimized by matching the sloshing natural frequency to the excitation frequency.

Primary Energy Conversion in a Direct Drive Turbine for Wave Power Generation

  • Prasad, Deepak Divashkar;Zullah, Mohammed Asid;Kim, You-Taek;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.237.1-237.1
    • /
    • 2010
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Ocean contains energy in form of thermal energy and mechanical energy: thermal energy from solar radiation and mechanical energy from the waves and tides. The current paper looks at generating power using waves. The primary objective of the present study is to maximize the primary energy conversion (first stage conversion) of the base model by making some design changes. The model entire consisted of a numerical wave tank and the turbine section. The turbine section had three components; front guide nozzle, augmentation channel and the rear chamber. The augmentation channel further consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. Different front guide nozzle configuration and rear chamber design were studied. As mentioned, a numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet. The inlet which was modeled as a plate wall which moved sinusoidally with the general function, $x=asin{\omega}t$. In addition to primary energy conversion, observation of flow characteristics, pressure and the velocity in the augmentation channel, rear chamber as well as the front guide nozzle are presented in the paper. The analysis was performed using the commercial code of the ANSYS-CFX. The base model recorded water power of 29.9 W. After making the changes, the best model obtained water power of 37.1 W which represents an increase of approximately 24% in water power and primary energy conversion.

  • PDF

Numerical simulation of wave transformation with the internal wave maker (내부조파를 활용한 파랑 변형 수치모의)

  • Ha, Tae-Min;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.43-43
    • /
    • 2011
  • 최근 컴퓨터 기술의 발전으로 수심방향으로 완전한 운동방정식인 Navier-Stokes 방정식을 이용하는 3차원 수치모형에 의한 연구가 기초과학 분야인 수학에서부터 공학은 물론 의학 분야까지 광범위하게 진행되고 있다. 3차원 수치모형을 이용한 연구는 이론적으로 매우 우수하긴 하나 정확도 높은 결과를 얻기 위해서는 매우 조밀한 격자를 필요로 하기 때문에 아직까지 막대한 계산시간이 필요하다는 단점이 있으나 근래의 컴퓨터 기술이 엄청난 속도로 발전하고 있는 점을 감안할 때 적용 가능성은 계속 높아지고 있다. 이러한 흐름에 따라 해안공학 분야에서도 3차원 수치모형을 이용한 다양한 연구가 시도되고 있다. 복잡한 해안구조물로 인한 파랑변형 및 구조물의 안전성 등을 검토할 때 기존의 평면 2차원 수치모형이나 연직 2차원 수치모형으로는 재현이 힘들어 상대적으로 수치모형을 활용한 연구의 효용성이 낮았던 것에 비해 3차원 수치모형을 활용할 경우 복잡한 지형 및 구조물의 형상을 재현할 수 있기 때문에 좀 더 유용하게 사용될 수 있다. 한편, 파랑변형을 다루는 수치모형실험을 수행할 때 외부조파를 사용할 경우 구조물이나 지형에 의해 반사되어 나온 파랑이 조파지점에 도달할 때 실험영역으로 재 반사되는 문제가 발생한다. 이를 해결하기 위해 내부조파기법의 개발에 대한 연구가 필수적이었으며, 2차원 수치모형을 중심으로 그 연구가 매우 활발하게 진행되어 왔으나 Navier-Stokes 방정식 모형의 경우 상대적으로 연구가 미흡하였다. 본 연구에서는 3차원 Navier-Stokes 방정식 모형에서 내부조파기법을 도입하여 목표 파랑을 조파하였다. 수치모형은 Navier-Stokes 방정식을 엇갈림 격자체계에서 계산하는 유한차분모형으로 자유수면 추적에는 2차 정확도의 VOF(volume-of-fluid) 기법을 사용한다. 수치모형실험 결과를 일정한 수심을 전파하는 정현파의 해석해와 비교하였으며, 수치모형실험 결과가 비교적 정확하게 목표 파랑을 조파할 수 있음을 검증하였다.

  • PDF