DOI QR코드

DOI QR Code

Biorefinery Based on Weeds and Agricultural Residues

잡초 및 농림부산물을 이용한 Biorefinery 기술개발

  • Hwang, In-Taek (Biorefinery Research Center, Korea Research Institute of Chemical Technology) ;
  • Hwang, Jin-Soo (Biorefinery Research Center, Korea Research Institute of Chemical Technology) ;
  • Lim, Hee-Kyung (Biorefinery Research Center, Korea Research Institute of Chemical Technology) ;
  • Park, No-Joong (Biorefinery Research Center, Korea Research Institute of Chemical Technology)
  • 황인택 (한국화학연구원 Biorefinery 연구센터) ;
  • 황진수 (한국화학연구원 Biorefinery 연구센터) ;
  • 임희경 (한국화학연구원 Biorefinery 연구센터) ;
  • 박노중 (한국화학연구원 Biorefinery 연구센터)
  • Received : 2010.12.02
  • Accepted : 2010.12.10
  • Published : 2010.12.30

Abstract

The depletion of fossil fuels, ecological problems associated with $CO_2$ emissions climate change, growing world population, and future energy supplies are forcing the development of alternative resources for energy (heat and electricity), transport fuels and chemicals: the replacement of fossil resources with $CO_2$ neutral biomass. Several options exist to cover energy supplies of the future, including solar, wind, and water power; however, chemical carbon source can get from biomass only. When used in combination with environmental friend production and processing technology, the use of biomass can be seen as a sustainable alternative to conventional chemical feedstocks. The biorefinery concept is analogous to today's petroleum refinery, which produce multiple fuels and chemical products from petroleum. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and value-added chemicals from biomass. Biorefinery is the co-production of a spectrum of bio-based products (food, feed, materials, and chemicals) and energy (fuels, power, and heat) from biomass [definition IEA Bioenergy Task 42]. By producing multiple products, a biorefinery takes advantage of the various components in biomass and their intermediates therefore maximizing the value derived from the biomass feedstocks. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical or nutraceutical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol. Future biorefinery may play a major role in producing chemicals and materials as a bridge between agriculture and chemistry that are traditionally produced from petroleum. Industrial biotechnology is expected to significantly complement or replace the current petroleum-based industry and to play an important role.

이제 바야흐로 21세기 탈석유 시대에 대비하기 위해서는 범국가적 차원의 새로운 산업전략이 필요하게 되었다. "바이오리파이너리"란 원유로부터 각종 화학제품을 생산하는 기존의 기술과 달리 석유대신 나무나 볏짚 등과 같은 식물을 원료로 해서 바이오화학제품이나 바이오연료 등을 생산하는 기술을 총칭한다. 바이오리파이너리를 통한 바이오매스 기반의 화학산업은 석유로부터 생성되는 많은 역기능적인 문제점들을 해결할 수 있다. 바이오리파이너리 기술을 이용해서 생산할 수 있는 제품을 특성별로 분류하면, 바이오 연료, 대체원료, 특수 기능물질, 바이오폴리머 등이 있으며, 이러한 공정기술 개발이 미래지속 성장 화학기술의 중심기술이 될 것이다. 바이오 연료에는 에탄올, 디젤, 수소 등이 있고, 대체원료(chemical feedstock)로서는 글리세롤, 젖산, 아세톤, 부탄올, 프로피온산, 부틸산, 부탄디올, 프로판디올, 구연산, 숙신산, 각종 아미노산 등이 해당된다. 특수기능물질 중에는 항생제, 다당류, 미생물농약, 생리활성물질 등과 각종 생촉매 전환반응 생산제품, 바이오 식품소재 등이 있고, 바이오 폴리머는 미생물 대사산물 유기산을 원료로 하는 고분자와 미생물이 직접 생산하는 바이오 폴리머 등이 있다. 이러한 공정기술 개발이 미래 지속 성장 화학기술의 중심기술이 될 것이며, 공정기술 중에서 가장 핵심이 되는 것은 충분한 양의 바이오매스 확보 및 생화학적/열화학적 전환기술이다. 바이오매스 확보를 위하여 환경적응성이 큰 잡초의 이용이 기대된다. 바이오리파이너리는 농업으로 시작되며, 농업과 화학산업의 다리역할을 하는 기술이 바로 바이오리파이너리인 것이다.

Keywords

References

  1. 김기수. 2003. 셀룰로오스와 라이오셀(Lyocell) 섬유. KISTI 기술동향분석보고서, pp. 4-27.
  2. 석유화학공업협회. 2010. 홈페이지 http : //www.kpia.or.kr/index.htm
  3. 이선구, 박성훈. 2006. 산업 BT : 생물자원의 생물변환에 의한 연료, 화학원료 및 고분자의 생산. 한국화학공학회지 44(1):23-34.
  4. 일본공업신문사. 2006. 월간 지구환경 9월호.
  5. 정재훈, 권기석, 장한수. 2008. 수송용 바이오에너지 개발과 미래. 한국미생물생명공학회지 36(1):1-5.
  6. 지식경제부. 2009. 바이오화학산업 발전전략 기획보고서. 350 p.
  7. 산업자원부, 2007. 산업바이오 활성화를 위한 전략기술 분석(보고서). 316 p.
  8. 한국화학연구원. 2007. "지속성장 화학기술 개발사업 핵심기술동향 분석", 기술검토보고서. 228 p.
  9. 한국석유화학공업협회. http://www.kpia.or.kr/
  10. Bachmann M. 2007. Global chemicals-Yearly Update 2006, Cygnus Business Consulting & Research; Informa Economics. http : //www.marketresearch.com/search/
  11. Burton, S. G., O. A. Cowan and J. M. Woodley 2002. The search for the ideal biocatalyst. Nature Biotechnology 20:37-45. https://doi.org/10.1038/nbt0102-37
  12. Clark, J. H., V. Budarin, F. E. I. Deswarte, J. J. E. Hardy, F. M. Ken on, A. J. Hunt, R. Luque, D. J. Macquarrie, K. Milkowski, A. Rodriguez, O. Samuel, S. J. Tavener, R. J. White and A. J. Wilson. 2006. Green chemistry and the biorefinery : a partnership for a sustainable future. Green Chem., 8:853-860. https://doi.org/10.1039/b604483m
  13. Corma, A., S. Iborra and A. Velty. 2007. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107:2411-2502. https://doi.org/10.1021/cr050989d
  14. DOE USA : Department of Energy, USA Biomass Program, EERE. http : //wwwl.eere.energy.gov/biomass/biomass_basics.html.
  15. Fernando, S., S. Adhikari, C. Chandrapal and N. Murali. 2006. Biorefineries : current status, challenges, and future direction. Energy & Fuels 20:1727-1737. https://doi.org/10.1021/ef060097w
  16. Garcia, L., R. French, S. Czernik and E. Chomet. 2000. Catalytic Steam reforming of bio-oils for the production of hydrogen : effects of catalyst composition. Appl. Catal. A. 201:225-239. https://doi.org/10.1016/S0926-860X(00)00440-3
  17. Hammel, K. E.. 1997. Fungal degradation of lignin, driven by nature: Plant litter quality and decomposition (eds G. Cadisch and K. E. Giller). pp. 33-45.
  18. Howard, R. L., Abotsi E., Jansen van Rensburg E. L., and Howard S. 2003. Lignocellulose biotechnology : issues of bioconversion and enzyme production. African J. of Biotechnology 2(12):602-619. https://doi.org/10.5897/AJB2003.000-1115
  19. Hwang, I. T., H. K. Lim, H. Y. Song, S. J. Cho, J. S. Chang and N. J Park. 2010. Cloning and characterization of a xylanase, KRICT PX1 from the strain Paenibacillus sp. HPL-001. Biotechnology Advances 28:594-601. https://doi.org/10.1016/j.biotechadv.2010.05.007
  20. Jeffries, T. W. 1994. Biodegradation of lignin and hemicelluloses. C. Ratledge (ed.), Biochemistry of Microbial Degradation, 233-277. Kluwer Academic Publishers. Printed in the Netherlands.
  21. Kamm, B., and M. Kamm 2004. Principles of biorefineries. Appl. Microbiol. Biotechnol. 64:137-145. https://doi.org/10.1007/s00253-003-1537-7
  22. Klemm, D., B. Heublein , H. P. Fink and A Bohn. 2005. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44:3358-3393. https://doi.org/10.1002/anie.200460587
  23. Li, C., B. Knierim, C. Manisseri, R. Arora, H. V. Scheller, M. Auer, K. P. Vogel, B. A. Simmons and S. Singh. 2010. Comparison of dilute acid and ionic liquid pretreatment of switchgrass : Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology 101 :4900-4906. https://doi.org/10.1016/j.biortech.2009.10.066
  24. Mamman, A. S., Jong-Min Lee, Yeong-Cheol Kim, In Taek Hwang, No-Joong Park, Young Kyu Hwang, Jong-San Chang and Jin-Soo Hwang. 2008. Furfural : hemicellulose/xylosederived biochemical. Biofuels, Bioprod. Bioref., 2(5):438-454. https://doi.org/10.1002/bbb.95
  25. Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple and M. Ladisch. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96:673-686. https://doi.org/10.1016/j.biortech.2004.06.025
  26. Ni M., D. Y. C. Leung, M. K. H. Leung and K. Sumathy. 2006. An overview of hydrogen production from biomass. Fuel Processing Technology 87:461-472. https://doi.org/10.1016/j.fuproc.2005.11.003
  27. Perez, J., J. Munz-Dorado, T. de la Rubia and J. Martinez. 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin : an overview. Int. Microbiol. 5:53-63. https://doi.org/10.1007/s10123-002-0062-3
  28. Sanders, J., E. Seott and H. Mooibroek. 2005. Biorefinery, the bridge between agriculture and chemistry. http ://www.biorefinery.nl/fileadmin/ biorefinery/docs/sanders_br_the_bridge_between_agriclthure_and_ chemistry.pdf.
  29. Sanders, J., E. Scott, R. Weusthuis and H. Mooibroek. 2007. Bio-Refinery as the bio-inspired process to bulk chemicals. Macromol. Biosci. 7: 105-117. https://doi.org/10.1002/mabi.200600223
  30. Sudesh, K., H. Abe and Y. Doi. 2000. Synthesis, structure and properties of polyhydroxyalkanoates : biological polyesters. Prog. Polym. Sci. 25: 1503-1555. https://doi.org/10.1016/S0079-6700(00)00035-6
  31. Tan S. S. Y., D. R. MacFarlane, J. Upfal, L. A. Edye, W. O. S. Doherty, A. F. Patti, J. M. Pringle and J. L. Scott. 2009. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem. 11:339-345. https://doi.org/10.1039/b815310h
  32. The Council for Chemical Research, Technology vision 2020. 1996. The U.S. Chemical Industry.
  33. US DOE 2006. Forest product industry technology roadmap.
  34. Werpy, T., G. Petersen (eds.). 2004. Top value added chemicals from biomass (ed). U. S. Department of Energy, Office of scientific and technical information, 2004, No. : DOE/GO-102004-1992.
  35. Woodward, J., M. Orr, K. Cordray and E. Greenbaum. 2000. Enzymatic production of biohydrogen. Nature 405:1014-1015. https://doi.org/10.1038/35016633
  36. Wright, M. M., and R. C. Brown. 2007. Comparative economics of biorefineries based on the biochemical and thermochemical platforms. Biofuels, Bioprod. Bioref. 1:49-56. https://doi.org/10.1002/bbb.8
  37. Yang, S. T. 2006. Bioprocessing for value-added products from renewable resources. Eds. Elsevier B.V., Amsterdam (Netherlands). p. 653.
  38. ZakzeskiJ., P. C. A. Bruijnincx, A. L. Jongerius and B. M. Weckhuysen. 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110:3552-3599. https://doi.org/10.1021/cr900354u
  39. Zhang, Y. H. P., and L. R. Lynd. 2005. Toward an aggregated understanding of enzymatic hydrolysis of cellulose : noncomplexed cellulase systems. Biotechnology and Bioengineering 88(7):797-824.

Cited by

  1. Comparison of Antioxidant and Physiological Properties of Jerusalem Artichoke Leaves with Different Extraction Processes vol.42, pp.1, 2013, https://doi.org/10.3746/jkfn.2013.42.1.068
  2. Physiochemical Characteristics for Bale Types and Storage Periods of Agricultural By-products as a Lignocellulosic Biomass vol.58, pp.3, 2013, https://doi.org/10.7740/kjcs.2013.58.3.324
  3. Antioxidative and Antidiabetic Activities of Methanol Extracts from Different Parts of Jerusalem Artichoke (Helianthus tuberosus L.) vol.29, pp.1, 2016, https://doi.org/10.9799/ksfan.2016.29.1.128
  4. Quality characteristics and antioxidant activity of onion peel extracts by extraction methods vol.22, pp.2, 2015, https://doi.org/10.11002/kjfp.2015.22.2.267