DOI QR코드

DOI QR Code

Development of "Miscanthus" the Promising Bioenergy Crop

유망 바이오에너지작물 "억새" 개발

  • Moon, Youn-Ho (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Koo, Bon-Cheol (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Choi, Yoyng-Hwan (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Ahn, Seung-Hyun (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Bark, Surn-Teh (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Cha, Young-Lok (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • An, Gi-Hong (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Kim, Jung-Kon (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Suh, Sae-Jung (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
  • 문윤호 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 구본철 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 최용환 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 안승현 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 박선태 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 차영록 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 안기홍 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 김중곤 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 서세정 (농촌진흥청 국립식량과학원 바이오에너지작물센터)
  • Received : 2010.11.12
  • Accepted : 2010.11.22
  • Published : 2010.12.30

Abstract

In order to suggest correct direction of researches on Miscanthus spp. which are promising bioenergy crop, authors had reviewed and summarized various literature about botanical taxonomy, morphology and present condition of breeding, cultivation and utilization of miscanthus. Among the genus of Miscanthus which are known 17 species, the most important species are M. sinensis and M. sacchariflorus which origin are East Asia including Korea, and M. x giganteus which is inter-specific hybrid of tetraploid M. sacchariflorus and diploid M. sinensis. Miscanthus is superior to other energy crops in resistance to poor environments including cold, saline and damp soil, nitrogen utilization efficiency, budget of input energy and carbon which are required for producing biomass and output which are stored in biomass. The major species for production of energy and industrial products including construction material in Europe, USA and Canada is M. x giganteus which was introduced from Japan in 1930s. In present, many breeding programs are conducted to supplement demerits of present varieties and to develop "Miscanes" which is hybrid of miscanthus and sugar cane. In Korea, the researches on breeding and cultivation of miscanthus were initiated in 2007 by collecting germplasms, and developed "Goedae-Uksae 1" which is high biomass yield and "mass propagation method of miscanthus" which can improve propagation efficiency in 2009. In order to develop "Korean miscanthus industry" in future, the superior varieties available not only domestic but also foreign market should be developed by new breeding method including molecular markers. Researches on production process of cellulosic bio-ethanol including pre-treatment and saccharification of miscanthus biomass also should be strengthen.

억새의 식물학적인 분류 및 형태, 선진국의 억새 육종, 재배 및 이용 현황 그리고 우리나라의 억새 연구성과 등을 고찰함으로서 향후 우리나라 에너지 자급율 제고를 위한 억새 연구방향을 제시하고자 국내외 연구결과를 요약하면 다음과 같다. 억새속 식물에는 17개종이 존재하는데 이 중 바이오 에너지용으로 중요한 종은 한국 등 동아시아가 원산인 참억새(M. sinensis)와 물억새(M. sacchariflorus) 그리고 이들 두 종의 종간 교잡종인 3배체 억새(M. x giganteous) 등이다. 여러 가지 에너지작물 중 억새는 연간 바이오매스 수량이 많고 저온, 염해, 습해 등 열악 환경 적응성과 질소이용효율이 우수하며 에너지 산출/투입 수지가 가장 높고 지상부 줄기와 땅속줄기에 다량의 탄소를 저장하기 때문에 탄수수지가 가장 높다. 유럽, 미국 및 캐나다 에서는 1930년대부터 일본으로부터 3배체 억새를 도입하여 연료용 펠릿 생산, 열병합발전, 양액재배 배지, 건축자재 및 강화 플라스틱 원료로 이용한다. 현재 재배되는 3배체 억새 단점보완을 위한 품종육성연구와 사탕수수와 억새교잡종인 "Miscane" 육성 연구가 진행되고 있다. 우리나라에서는 2007년 억새 유전자원 수집이 착수된 이후 2009년에 바이오매스 수량이 많은 "거대억새1호"와 억새를 증식효율을 높일 수 있는 "억새대량증식방법"을 개발하였다. 향후 우리나라 억새산업 발전을 위해서는 분자육종 등 새로운 육종기법을 활용하여 우리나라뿐만 아니라 해외에서도 재배할 수 있는 우량 신품종을 육성하는 한편 바이오매스의 전처리, 당화 및 발효 등 셀룰로오스계 에탄올 생산공정에 관한 연구도 강화해야 할 것이다.

Keywords

References

  1. Beale, C. V., and S. P. Long. 1995. Can perennial $C_4$ grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ. 18:641-650. https://doi.org/10.1111/j.1365-3040.1995.tb00565.x
  2. Beale, C. V., D. A. Bint and S. P. Long. 1996. Leaf photosynthesis in the $C_4$-grass Miscanthus giganteus, growing in the cool temperate climate of southern England. J. Exp. Bot. 47: 267-273. https://doi.org/10.1093/jxb/47.2.267
  3. Bullard, M., and P. Metcalfe. 2001. Estimating the energy requirements and $CO_2$ Emission from production of the perennial grasses miscanthus, switchgrass and reed canary grass. ADAS Consulting Ltd, USA. 94 p.
  4. Chen, S., and A. R. Stephen. 2006. MlSCANTHUS Andersson. Flora of China 22:581-583.
  5. Chris, S., Y. Heather, T. Caroline Taylor, C. D. Sarah and P. L. Stephen. 2010. Feedstocks for Lignocellulosic Biofuels. Science 329:790. https://doi.org/10.1126/science.1189268
  6. Christian, D. G., and E. Haase. 2001. Agronomy of Miscanthus. In : Jones, M. B., Walsh, M. (Eds.), Miscanthus for Energy and Fiber. James & James (Science Publishers) Ltd., London, pp. 21-45.
  7. Christian, D. G., A. B. Riche and N. E. Yates. 2008. Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 successive harvests. Industrial Crops and Products 28:320-327. https://doi.org/10.1016/j.indcrop.2008.02.009
  8. Dafu, W., R. Archie, Jr. Portis, P. M. Stephen and P. L. Stephen. 2008. Cool $C_4$ photosynthesis : Pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus x giganteus. Plant Physiology 148:557-567. https://doi.org/10.1104/pp.108.120709
  9. David, M. B., L. T. Thomas, J. H. Jonathan and P. B. David. 2009. Dry matter partitioning and quality of Miscanthus, Panicum, and Saccharum genotypes in Arkansas, USA. Biomass and Bioenergy 33:610-619. https://doi.org/10.1016/j.biombioe.2008.10.002
  10. David, M. B. 1997. Chromosome transmission and meiotic behavior in various sugarcane crosses. J. American Society of Sugar Cane Technology 17:38-46.
  11. Farrell, A. D., J. C. Clifton-Brown, I. Lewandowski and M. B. Jones. 2006. Genotypic variation in cold tolerance influences the yield of Miscanthus. Annals of Applied Biology 149(3):337-345. https://doi.org/10.1111/j.1744-7348.2006.00099.x
  12. Fernando, E. M., B. V. Maria,, P. L. Stephen and A. B. German.2008. Meta-analysis of the effects of management factors on Miscanthus x giganteus growth and biomass production. Agricultural and Forest Meteorology 148:1280-1292. https://doi.org/10.1016/j.agrformet.2008.03.010
  13. Heaton, E. A., J. Clifton-Brown, T. Voigt, M. B. Jones and S. P. Long. 2004. Miscanthus for renewable energy generation : European Union experience and projections for Illinois. Mitigation Adapt. Strategies Global Change 9:433-451. https://doi.org/10.1023/B:MITI.0000038848.94134.be
  14. Hirayoshi, I., K. Nishikawa, R. Kato and M. Kitagawa. 1955. Cytological studies on forage plants. (III) Chromosome numbers in Miscanthus. Jap. J. Breeding 5(1):49-50. https://doi.org/10.1270/jsbbs1951.5.49
  15. Hirayoshi, I, K. Nishikawa, M. Kubono and T. Murase. 1957. Cytological studies of forage plant. VI . On the chromosome number of ogi (Miscanthus sacchariflorus). Research bulletin of the faculty of agriculture, Gifu University 8:8-13.
  16. Jorgensen, U., J. Mortensen, J. B. Kjeldsen and K. U. Schwarz. 2003. Establishment, development and yield quality of fifteen Miscanthus genotypes over three years in Denmark. Acta Agriculturae Scandinavica, Section B-Plant Soil Science, Published by Talyor and Francis, Informa Ltd Registered in England and Wales. pp. 190-199.
  17. Kim, G. Y., C. W. Lee and G. J. Joo. 2004. The evaluation of early growth pattern of Miscanthus sacchariflorus after cutting and burning in the Woopo Wetland. Korean J. Limnol. 37(2):255-262.
  18. Koonin, S. E.. 2006. Getting serious about biofuels? Science 311 :435. https://doi.org/10.1126/science.1124886
  19. Laurent, G, C., J. C. Daniels,? and A. D'Hont. 2004. A review of recent molecular genetics evidence for sugarcane evolution and domestication. Ethnobotany Research & Applications 2:9-17. https://doi.org/10.17348/era.2.0.9-17
  20. Lewandowski, I. 1998. Propagation method as an imp::mam factor in the growth and development of Miscanthus giganteus. Ind. Crops Prod. 8: 229-245. https://doi.org/10.1016/S0926-6690(98)00007-7
  21. Lewandowski, I., J. Clifton-Brown, J. M. O. Scurlock and W. Huisman. 2000. Miscanthus : European experience with a novel energy crop. Biomass Bioenergy 19:209-227. https://doi.org/10.1016/S0961-9534(00)00032-5
  22. Lewandowski, I., M. O. S. Jonathan, L. Eva and C. Myrsini. 2003. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy 25:335-361. https://doi.org/10.1016/S0961-9534(03)00030-8
  23. Lewandowski, I., and A. Heinz. 2003. Delayed harvest of miscanthus-influences on biomass quantity and quality and environmental impacts of energy production. Eur. J. Agron. 19:45-63. https://doi.org/10.1016/S1161-0301(02)00018-7
  24. Lewandowski, I., and U. Schmidt. 2006. Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agriculture, Ecosystems and Environment 112:335-346. https://doi.org/10.1016/j.agee.2005.08.003
  25. Moon, Y. H. 2010. Report of official foreign trip "America and Canada trip for learning breeding methods and surveying cultivation and utilization of miscanthus". http ://btis.mopas.go.kr/
  26. Qingguo, X. 2003. Potential of giant grass Triarrhena lutarioriparia to grow in cold, dry and saline conditions as energy source. Proc. of International Conference on Bioenergy Utilization and Environment Protection-6th LAMNET Project Workshop, Dalian, China SESSION 5 : BIOMASS RESOURCES.
  27. Syozo, A., and S. Itaru. 1960. The cytotaxonomy of the genus Miscanthus and its phylogenic status. Bulletin of the faculty of agriculture, Mie University 25: 1-24.
  28. Trevor, R. H., W. C Mark, T. Chigusa, J. L. IlIa J., D. B. Michael and A.R. STEPHEN. 2002a. The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). American Journal of Botany 89(2):279-286. https://doi.org/10.3732/ajb.89.2.279
  29. Trevor, R. H., W. C. Mark, M. D. Lled, S. Nicolas and A. R. Stephen. 2002b. Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J. Plant Res. 115:381-392. https://doi.org/10.1007/s10265-002-0049-3

Cited by

  1. Growth of Bioenergy Crop Miscanthus sacchariflorus cv. Geodae 1 on Barren Reclaimed Land Applied with Solidified Sewage Sludge in Landfill Sites vol.60, pp.3, 2015, https://doi.org/10.7740/kjcs.2015.60.3.374
  2. Flowering Patterns of Miscanthus Germplasms in Korea vol.60, pp.4, 2015, https://doi.org/10.7740/kjcs.2015.60.4.510
  3. Alkaline twin-screw extrusion pretreatment of Miscanthus with recycled black liquor at the pilot scale vol.164, 2016, https://doi.org/10.1016/j.fuel.2015.10.006
  4. Manufacture and properties of Miscanthus–wood particle composite boards vol.58, pp.5, 2012, https://doi.org/10.1007/s10086-012-1262-x
  5. Establishment of Callus Induction and Plant Regeneration System from Mature Seeds of Miscanthus sinensis vol.24, pp.5, 2011, https://doi.org/10.7732/kjpr.2011.24.5.628
  6. Dissolution Characteristics and Regenerated Miscanthus Sinensis Holocellulose Film Prepared by Dissolving the LiBr Solution vol.47, pp.6, 2015, https://doi.org/10.7584/ktappi.2015.47.6.089
  7. Environmental Aspect of Runoff Water from Miscanthus Production Field vol.55, pp.6, 2013, https://doi.org/10.5389/KSAE.2013.55.6.113
  8. Overwintering pattern of larvae of Chilo suppressalis Walker in the bioenergy crop Miscanthus sacchariflorus cv. Geodae 1 vol.59, pp.3, 2014, https://doi.org/10.7740/kjcs.2014.59.3.369
  9. Control Effect of Insecticides against Chilo suppressalis Walker of Native Miscanthus in Korea vol.5, pp.4, 2016, https://doi.org/10.5660/WTS.2016.5.4.230
  10. Required Mowing Power and Bale Density of Miscanthus × Giganteus for Field Biomass Harvesting using Different Methods vol.39, pp.4, 2014, https://doi.org/10.5307/JBE.2014.39.4.253
  11. A new genotype of Miscanthus sacchariflorus Geodae-Uksae 1, identified by growth characteristics and a specific SCAR marker vol.36, pp.6, 2013, https://doi.org/10.1007/s00449-013-0893-7
  12. Production of Chemical Intermediate Furfural from Renewable Biomass Miscanthus Straw vol.52, pp.4, 2014, https://doi.org/10.9713/kcer.2014.52.4.492
  13. Physiochemical Characteristics for Bale Types and Storage Periods of Agricultural By-products as a Lignocellulosic Biomass vol.58, pp.3, 2013, https://doi.org/10.7740/kjcs.2013.58.3.324
  14. Evaluation of Primary Thermal Degradation Feature of M. sacchariflorus After Removing Inorganic Compounds Using Distilled Water vol.41, pp.4, 2013, https://doi.org/10.5658/WOOD.2013.41.4.276
  15. Effects of Delayed Harvesting of Miscanthus spp. Risen in the Previous Year on its Current Year’S Yield and Growth Characteristics vol.61, pp.3, 2016, https://doi.org/10.7740/kjcs.2016.61.3.215
  16. Xylanase Activity of Bacillus pumilus H10-1 Isolated from Ceratotherium simum Feces vol.29, pp.5, 2014, https://doi.org/10.7841/ksbbj.2014.29.5.316
  17. Effects of Application of Solidified Sewage Sludge on the Growth of Bioenergy Crops in Reclaimed Land vol.56, pp.4, 2011, https://doi.org/10.7740/kjcs.2011.56.4.299
  18. Optimization of Cellulolytic Enzyme Production for newly isolated Bacillus sp. H9-1 from Herbivore Feces vol.28, pp.1, 2013, https://doi.org/10.7841/ksbbj.2013.28.1.42
  19. Diversity in ploidy levels and nuclear DNA amounts in Korean Miscanthus species vol.193, pp.3, 2013, https://doi.org/10.1007/s10681-013-0910-6
  20. Fast pyrolysis of the energy crop “Geodae-Uksae 1” in a bubbling fluidized bed reactor vol.95, 2016, https://doi.org/10.1016/j.energy.2015.11.049
  21. Continuous alkaline pretreatment of Miscanthus sacchariflorus using a bench-scale single screw reactor vol.181, 2015, https://doi.org/10.1016/j.biortech.2015.01.079
  22. Phytoremediation of Heavy Metals in Contaminated Water and Soil UsingMiscanthussp. Goedae-Uksae 1 vol.17, pp.6, 2015, https://doi.org/10.1080/15226514.2013.862209
  23. Effect of Mature Miscanthus sacchariflorus var. No. 1 on In Vitro Rumen Fermentation Characteristics and Its Dry Matter Digestibility vol.32, pp.2, 2012, https://doi.org/10.5333/KGFS.2012.32.2.165
  24. Monitoring Biota in Giant Miscanthus Fields vol.56, pp.1, 2014, https://doi.org/10.5389/KSAE.2014.56.1.089
  25. The Effects of Solidified Sewage Sludge as a Soil Cover Material for Cultivation of Bioenergy Crops in Reclaimed Land vol.57, pp.3, 2012, https://doi.org/10.7740/kjcs.2012.57.3.238
  26. Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures vol.138, 2013, https://doi.org/10.1016/j.biortech.2013.03.186
  27. Quality and Combustion Characteristics of Miscanthus Pellet for Bioenergy vol.22, pp.4, 2016, https://doi.org/10.7464/ksct.2016.22.4.286
  28. Bioethanol Production by Optimal Enzymatic Hydrolysis of Pretreated Miscanthus sinensis var. purpurascens vol.49, pp.4, 2015, https://doi.org/10.14397/jals.2015.49.4.135