DOI QR코드

DOI QR Code

Analytical Method for MCPA Residue in Brown Rice and Rice Straw by HPLC/UVD

HPLC/UVD를 이용한 현미와 볏짚 중 MCPA의 잔류분석방법 확립

  • Yoo, Ki-Yong (Department of Food and Environment Science, College of Life Science and Natural Resources, Wonkwang University) ;
  • Kang, Dae-Won (Department of Food and Environment Science, College of Life Science and Natural Resources, Wonkwang University) ;
  • Choi, Yong-Hwa (School of Ecological & Environmental System, College of Ecological & Environmental Science, Kyungpook National University) ;
  • Han, Seong-Soo (Department of Food and Environment Science, College of Life Science and Natural Resources, Wonkwang University)
  • 유기용 (원광대학교 생명자원과학대학 식품.환경학과) ;
  • 강대원 (원광대학교 생명자원과학대학 식품.환경학과) ;
  • 최용화 (경북대학교 생태환경대학 생태환경시스템학부) ;
  • 한성수 (원광대학교 생명자원과학대학 식품.환경학과)
  • Received : 2010.10.25
  • Accepted : 2010.12.06
  • Published : 2010.12.30

Abstract

This study was carried out to establish the analytical method of MCPA residue in brown rice and rice straw by HPLC/UVD. When MCPA was extracted from sample under the pH 3.6 by adding acetone 200 mL and 1N-HCl 100 mL, the extraction efficiency was high by 87%. And purification efficiency was high by 83% when 5 mL of 1% methanol/acetonitrile was eluated by the florisil Sep-pak cartridge column. From spiking of $0.1{\mu}g\;mL^{-1}$ and $0.25{\mu}g\;mL^{-1}$ of MCPA to control sample, respectively, average recovery rate of MCPA in brown rice was 96.0% and 94.9% and that in rice straw was 92.5% and 88.2%, respectively. Precision of experiment was very high by relative standard deviation of 1.5% to 5.7%. In brown rice and rice straw treated with bentazone+MCPA (11+1.2%) of 30 kg and 60 kg per ha at 30 days after rice transplanting, respectively, maximum residue limit was under $0.05{\mu}g\;mL^{-1}$ of the recommended rate of Korean Food and Drug Administration. From the above results, the analytical procedure of MCPA in plants such as hydrolysis, saponification and derivatization were ommited, and retention time was faster and recovery rate was higher than the existed results of HPLC/UVD. Therefore, these results were greatly improved and seemed to be usefully applied for residue analysis of MCPA in plants.

HPLC/UVD를 이용한 현미와 볏짚 중 MCPA의 잔류분석방법 확립하고자 용매별 추출효율과 충진제별 정제효율을 검토한 결과, 용매별 추출효율은 시료 20g에 acetone 200mL와 1N-HCl 100mL의 혼합용매(pH 3.6)를 사용하는 것이 87%로 높은 효율을 보였고, 충진제별 정제효율은 florisil(6mL, 1g) Sep-$pak^{(R)}$ cartridge column에서 1% methanol/ acetonitile 용출이 83%의 효율을 나타내었다. 이 결과를 토대로 현미와 볏짚 시료 중의 MCPA 잔류분석을 수행하였는바, 평균회수율은 현미의 경우 96.0%와 94.9%이었으며, 볏짚의 경우 92.5%와 88.2%로 높은 회수율이었고, 실험의 정밀도는 상대표준편차 1.5~5.7%로 매우 높았다. 벼 이앙 후 30일에 bentazone+MCPA(11+1.2%) 합제를 ha당 30kg과 60kg을 각각 처리하여 재배한 현미와 볏짚 중 MCPA 잔류량은 모든 처리에서 식품의약품안전청이 권고한 잔류허용량인 $5{\mu}g\;mL^{-1}$ 미만이었다. MCPA의 HPLC 분석조건과 잔류분석절차의 결과는 가수분해, 유도체화, saponification과 같은 복잡한 분석절차를 생략할 수 있고, Rt가 기존 16.5 min.에서 6.5 min.으로 빨라져 인체위해성과 시간소모성의 단점을 개선하였으며, 회수율을 높이고 정밀도가 높은 결과로써 현미와 볏짚 중 HPLC에 의한 MCPA 잔류분석에 유용하게 적용할 수 있을 것으로 판단된다.

Keywords

References

  1. 식품의약품안전청. 2009. 식품의 농약잔류허용기준. p. 122.
  2. 유홍일, 이해근, 전성환. 2000. 농약잔류분석방법. p. 208-209.
  3. 한국작물보호협회. 2008. 농약사용지침서. p. 879.
  4. 農藥殘留分折法研究班. 1995. 農藥の殘留分折法. p. 396-398.
  5. Association of Official Analytical Chemists (AOAC). 1990. Official Methods of Analysis. 15th Ed. p. 187.
  6. British Crop Protection Council. 2006. Pesticide manual 14th edition. pp. 653-655.
  7. Collaborative International Pesticides Analytical Council (CIPAC). 1985. CIPAC Handbook 1C. pp. 2137-2145.
  8. Gilsbach W. und H. P. Thier. 1982. Bcitrage zur ruckstandsanalyse von chlorphnoxycarbonsaureherbiciden in weizenmehl. Z. Lebensm Unters Forsch 175:327-332. https://doi.org/10.1007/BF01136248
  9. Ground, R. S., and T. S. Stevens. 1980. Isomer specific assay of ester and salt formulations of 2-methyl-4-chlorphenoxyacetic acid and 2,4,5- trichlorophenoxy-acetic acid by high pressure liquid chromatography: collaborative study. J. Assoc. Off. Anal. Chem. 63(4):873-878.
  10. Hamann, R., and A. Kettrup. 1987. Determination of phenoxy acid herbicides in water samples. Chemosphere 16:527-536. https://doi.org/10.1016/0045-6535(87)90263-3
  11. Hamann, R., M. Meier and A. Kettrup. 1989. Determination of phenoxy acid herbicides by high-performance liquid chromatography and online enrichment, I. Possibilities of chromatographic seperation by means of high-performance liquid chromatography considering especially on-line enrichment of the herbicide compounds. Z. Anal. Chem. 334:231-234. https://doi.org/10.1007/BF00497247
  12. Hoke, S. H., E. E. Brueggemann, L. J. Baxter and T. Trybus. 1986. Determination of phenoxy acid herbicides using solid-phase extraction and high-performance liquid chromatography. J. of chromatography 357:429-432. https://doi.org/10.1016/S0021-9673(01)95848-0
  13. Meier, M., R. Hamann and A. Kettrup. 1989. Determination of phenoxy acid herbicides by high-performance liquid chromatography and on-line enrichment, II. Determination of phenoxy acid herbicides in soil sample. Z. Anal. Chem. 334:235-237. https://doi.org/10.1007/BF00497248
  14. Stevens T. S., and R. B. Ground. 1979. High pressure liquid chromatography of ester and salt formulation of 2-methyl-4-chlorophenoxyacetic acid. J. Assoc. Off. Anal. Chem. 62(4):738-741.
  15. Wolfgang S. und T. Monika 1981. Gaschromatographische bestimmung von ruckstanden an pflanzenbehandlungsmitteln nach clean-up uber gel-chromatographie und mini-kieselgel-saulen-chromatographie, 4. Gas-chromatographische bestimmung von 11 herbiciden phenoxyalkancarbonsauren und ihren estern in pflanzenmaterial. Z. Anal Chem. 307:257-264. https://doi.org/10.1007/BF00496162