Lysobacter enzymogenes LE429와 Neem oil을 이용한 고추 병해의 생물학적 방제

Biocontrol of pepper diseases by Lysobacter enzymogenes LE429 and Neem Oil

  • ;
  • 조민영 (전남대학교 농업생명과학대학 응용생물공학부) ;
  • 이용성 (전남대학교 농업생명과학대학 응용생물공학부) ;
  • 박윤석 ((주)푸르네) ;
  • 박노동 (전남대학교 농업생명과학대학 응용생물공학부) ;
  • 남이 (농협중앙회 안성교육원) ;
  • 김길용 (전남대학교 농업생명과학대학 응용생물공학부)
  • Han, Thazin (Department of Biotechnology, Technological University) ;
  • Cho, Min-Young (Division of Applied Bioscience and Biotechnology, Institute of Agriculture Science and Technology, Chonnam National University) ;
  • Lee, Yong-Seong (Division of Applied Bioscience and Biotechnology, Institute of Agriculture Science and Technology, Chonnam National University) ;
  • Park, Yun-Seok (Purne Co., Ltd.) ;
  • Park, Ro-Dong (Division of Applied Bioscience and Biotechnology, Institute of Agriculture Science and Technology, Chonnam National University) ;
  • Nam, Yi (Ansung Training Institute, National Agricultural Cooperative Federation) ;
  • Kim, Kil-Yong (Division of Applied Bioscience and Biotechnology, Institute of Agriculture Science and Technology, Chonnam National University)
  • 투고 : 2010.07.27
  • 심사 : 2010.08.15
  • 발행 : 2010.08.31

초록

근권토양으로부터 고추역병균을 포함한 다양한 식물 병원성 곰팡이에 대하여 항균활성이 강한 세균을 분리하였다. 이 세균은 16S rRNA gene서열 분석 결과 Lysobacter enzymogens로 동정되었고 LE429로 명명 하였다. LE429는 chitinase, ${\beta}-1$, 3-glucanase, protease, gelatinase, lipase 및 항생물질과 같은 다양한 이차대사산물을 분비하였다. 항생물질은 diaon HP-20 및 sephadex LH-20 컬럼크로마토그래피 및 HPLC로 정제하여, GC-EI 및 GC-CI분석을 통하여 phenylacetic acid로 동정되었다. Field 실험에서 LE429의 고추 병해 억제 효과를 조사하기 위해 LE429배양액(CB), Neem oil 용액 (NO), LE429배양액과 Neem oil 용액을 섞은 혼합액(CB+NO), 그리고 대조구로서 물(CON)을 각각 고추에 처리하였다. 고추의 수량구성요소는 일반적으로 CB 처리구가 가장 높았고, CB+NO, CON 그리고 NO 순서로 나타났다. CB 처리구에서 병원성 곰팡이는 강하게 억제 되었지만, 몇몇 해충이 발견되었다. NO 처리구에서는 해충은 발견 되지 않았지만, 병원성 곰팡이가 발견 되었다. 하지만, CB+NO 처리구에서 병원성 곰팡이 및 해충이 전혀 발견 되지 않았다. 결론적으로, 2차 대 사산물을 생산하는 LE429와 Neem oil의 혼합액은 고추에 발생하는 병원성 곰팡이와 해충에 대한 좋은 생물학적 방제제가 될 수 있다고 사료된다.

A chitinolytic bacterium having a strong antagonistic activity against various pathogens including Phytophtora capsici was isolated from rhizosphere soil, and identified as Lysobacter enzymogenes (named as LE429) based on 16S rRNA gene sequence analysis. This strain produced a number of substances such as chitinase, ${\beta}-1$, 3-glucanase, lipase, protease, gelatinase and an antibiotic compound. This antibiotic compound was purified by diaion HP-20, sephadex LH-20 column chromatography and HPLC. The purified compound was identified as phenylacetic acid by gas chromatography-electron ionization (GC-EI) and gas chromatography-chemical ionization (GC-CI) mass spectrometry. In field experiment, pepper plants were treated by the strain LE429 culture (CB), neem oil solution (NO), combination (CB+NO) or control (CON). Plant height and number of branches, flowers and pods of pepper plant in CB treatment were generally highest, and followed by CB+NO, CON and NO. The fungal pathogens were strongly inhibited, while several insect pests were discovered in CB treatment. Any insect pests were not found, while all fungal pathogens tested were not suppressed in NO treatment. However, in CB+NO treatment, non incidence of fungal pathogens and insect pests were found. The strain LE429 producing secondary metabolites with neem oil should be a potential agent to control fungal diseases and insect pests.

키워드

참고문헌

  1. Abdel-Razek A.S., and S. Gowen. 2002. The Integrated Effect of the Nematode-Bacteria Complex and Neem Plant Extracts Against Plutella Xylostella (L.) Larvae (Lepidoptera: Yponomeutidae) on Chinese Cabbage, Archives of Phytopathology and Plant Protection. Volum 35, Number 3: 181-188(8). https://doi.org/10.1080/03235400215658
  2. Amadioha, A.C. 2000. Controlling rice blast in vivo and in vivo with extract of Azadirachta indica. Crop Prot. 19:287-290. https://doi.org/10.1016/S0261-2194(99)00080-0
  3. Cho, M.S., S.Y. Choi, T.W. Kim, C. Park, D.A. Kim. Y.R. Kim, S.M.Oh, S.W.Kim, Y.N. Youn, and Y.M. Yu. 2009. Insecticidal activity of Diamondback Moth, Plutella xylostella against Bacillus thuringiensis and Neem oil. The Korean Journal of Pesticide Science Vol. 13, No. 4: 315-324.
  4. Crawford, D.L., J.M. Lynch, J.M. Whipps, and M.A.Ousley. 1993. Isolalion and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol. 59:3899-905.
  5. Depieri, R.A., S.S. Martinez, and A.O. Menezes. 2005. Compatibility of the fungus Beauveria bassiana bassiana (Bals.) Vuill. (Deuteromycetes) with extracts of neem seeds and leaves, and the emulsible oil. Neotropical Entomology 34: 601-606. https://doi.org/10.1590/S1519-566X2005000400010
  6. Dey, R., K.K. Pal, D.M. Bhatt, and S.M. Chauhan. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol. Res. 159:371-394. https://doi.org/10.1016/j.micres.2004.08.004
  7. EI Shafie, H.A.F., and T. Basedow. 2003. The efficacy of defferent neem preparations for the control of insects damaging potatoes and eggplants in the Sudan. Crop Prot. 22: 1015-1021. https://doi.org/10.1016/S0261-2194(03)00118-2
  8. Elad, Y., I. Chet, and Y. Henis. 1982. Degradation of plant phathogenic fungi by Trichoderma harzianum. Can. J. Microbiol. 28:719-25. https://doi.org/10.1139/m82-110
  9. Folman, L.B., J. Postma, and J.A. Van Veen. 2003. Characterisation of Lysobacter enzymogenes (Christensen and Cook 1978) strain 3.1T8, a powerful antagonist of fungal diseases of cucumber. Microbiol. Res. 158:107-115. https://doi.org/10.1078/0944-5013-00185
  10. Handelsman, J., and E.V. Stabb. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8: 1855-869. https://doi.org/10.1105/tpc.8.10.1855
  11. Hashizume, H., S. Hattori, M. Igarashi, and Y. Akamatsu. 2004. Tripropeptin E, a new tripropeptin group antibiotic produced by Lysobacter sp. BMK333-48F3. J. Anlibiot. 57 :394-399.
  12. Islam M.T., Y. Hashidoko, A. Deora, T. Ito, and S. Tahara. 2005. Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne peronosporomycetes. Appl. Environ. Microbiol. 71:3786-3796. https://doi.org/10.1128/AEM.71.7.3786-3796.2005
  13. Kim, P.I., and K.C. Chung. 2004. Production of an antifungal protein for control Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol. Lett. 234: 177-183. https://doi.org/10.1111/j.1574-6968.2004.tb09530.x
  14. Ko, H.S., R.D. Jin, B.H. Krishnao, S.B. Lee, and K.Y. Kim. 2009. Biocontrol Ability of Lysobacter antibioticus HS124 Against Phytophthora Blight Is Mediated by the Production of 4-Hydroxyphenylacclic Acid and Several Lytic Enzymes. Curr Microbiol 59:608-615 https://doi.org/10.1007/s00284-009-9481-0
  15. Koul, O. 1999. Insect growth regulating and antifeedant effects of neem extracts and azadirachtin on two aphid species of ornamental plants. J. Biosci. 24:85-90. https://doi.org/10.1007/BF02941111
  16. Kumar, P., H.M. Poehling, and C. Borgemeister. 2005. Effects of different application methods of neem against sweetpotato whitefly, Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) on tomato plants. Journal of Applied Entomology 129:489-497. https://doi.org/10.1111/j.1439-0418.2005.01009.x
  17. Lingappa, Y., and J.L. Lockwood. 1962. Chitin media for selective culture of actinomycetes. Phytopathology 52 :317-323.
  18. Ma, L., X. Qiao, F. Gao, and B. Hao. 2001. Control of sweet pepper Fusarium wilt with compost extracts and its mechanism Chinese Journal of Applied & Environmental Biology. Chin. J. Appl. Envion. Biol. Vol. 7, no. 1 : 4-87.
  19. Mao, W., J.A. Lewis, P.K. Hebbar, and R.D. Lumsden. 1997. Seed treatment with a fungal or a bacterial antagonist for reducing corn damping-off caused by species of Pythium and Fusarium. Plant Diseases 81 :450-455. https://doi.org/10.1094/PDIS.1997.81.5.450
  20. Mao, W., R.D. Lumsden, J.A. Lewis, and P. K. Hebbar. 1998. Seed treatment using pre-infiltration and biocontrol agents to reduce damping-off of com caused by species of Pythium and Fusarium. Plant Diseases 82: 294-299. https://doi.org/10.1094/PDIS.1998.82.3.294
  21. Mao, S., R.D. Jin, S.J. Lee, Y.W. Kim, K.H. Park, K.H. Cha, R.D. Park, and K.Y. Kim. 2006. Isolation and characterization of antifungal substance from Burkholderia sp. culture broth. Curr. Microbiol. 53 :358-364. https://doi.org/10.1007/s00284-005-0333-2
  22. Mohan. G,T., and Gujar. 2001. Toxicity of Bacillus thuringiensis strains and commercial formulations to the diamondback moth, Plutella xylostella (L.). Crop Protection. 20:311-316. https://doi.org/10.1016/S0261-2194(00)00157-5
  23. Nakayama, T., Y. Homma, Y. Hashidoko, J. Mizutani, and S. Tahara. 1999. Possible role xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Appl. Environ. Microbiol. 65:4334-4339.
  24. Ortega, A.C. 1987. Insect Pests of Maize: A Guide for Field Identification. CIMMYT, Mexico, D.F., ISBN: 968-6127-07-0.
  25. O'Sullivan. J., J.E. McCullough, A.A . Tymiak, D.R. Kirsch, W.H. Trejo, and P.A. Principe. 1988. Lysobactin. a novel antibacterial agent produced by Lysobacter sp. J. Antibiot. 41:1740-1744. https://doi.org/10.7164/antibiotics.41.1740
  26. Patricia. M., and B. Larry. 2007. Rapid identification of gelatin and casein hydrolysis using TCA. Journal of Microbiological Methods 69:391-393. https://doi.org/10.1016/j.mimet.2007.01.005
  27. Patten. C.L., and B.R. Glick. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68:3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  28. Perez, L.A., and E.P. Cadapan. 1986. The efficacy of Trichogramma spp. as biological control against against some rice insecl pests. Philipp. Entomol, 6: 463-470.
  29. Pemadasa, M.A. 1982. Effects of phenylacetic acid on abaxial and adaxial stomatal movements, and its interaction with abscisic acid. New Phytol. 92:21-30. https://doi.org/10.1111/j.1469-8137.1982.tb03359.x
  30. Schaaf, O., A.P. Jarvis. S.A. Van der Esch, G. Giagnavoco, and N.J. Oldham. 2000. Rapid and sensitive analysis of azadirachtin, and related triterpenoids from neem (Azadirachta indica) by high performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. 886:89-97. https://doi.org/10.1016/S0021-9673(00)00492-1
  31. Schirmbock, M., M. Lorito, Y.L. Wang, C. K. Hayes, I. Arisan-Atac. F. Scala. G.E. Harman, and C. P. Kubicek. 1994. Parallel formation and synergism of hydrolytic enzymes, and peptaibol antibiotics, molecular echanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl. Environ. Microbiol. 60: 4364-4370.
  32. Shen, S.S., O.H. Choi, S.M. Lee, and C.S. Park. 2002. In vitro and in vivo activities of a biocontrol agent, Serratia plymuthica A21-4, against Phytophthora capsici. Korean J Plant Pathol 18: 221-224. https://doi.org/10.5423/PPJ.2002.18.4.221
  33. Shipp. J.L., X. Hao, A.P. Papadopoulos. and M.R. Binns. 1998. Impact of western flower thrips (Thysanoptera: Thripidae) on growth, photosynthesis and productivity of greengouse sweet pepper. Scientia Horticult 72: 87-102. https://doi.org/10.1016/S0304-4238(97)00130-1
  34. Shoda, M. 2000. Bacterial control of plant diseases. J. Biosci. Bioeng. 89:515-521. https://doi.org/10.1016/S1389-1723(00)80049-3
  35. Ueeda, M., M. Kubota. and K. Nishi. 2006. Contribution of jasmonic acid to resistance against Phytophthora blight ill Capsicium annuum cv. SCM334. Physiol. Mol. Plant Pathol. 67:149-154.
  36. Whipps, J. M., and D.R. Lumsden. 1991. Biological control of Pythium species. Biocontrol Science and Technology 1 :75-90. https://doi.org/10.1080/09583159109355188
  37. Woo. S., V. Fogliano, F. Scala. and M. Lorito, 2002. Synergism between fungal enzymes and bacterial antibiotics may enhance biocontrol. Antonie Van Leeuwenhoek 81 :353-356. https://doi.org/10.1023/A:1020540818163
  38. Yedidia, I., N. Benhamou, Y. Kapulnik, and I. Chet. 2000. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol. Biochem. 38:863-873. https://doi.org/10.1016/S0981-9428(00)01198-0