• 제목/요약/키워드: Neem oil

검색결과 34건 처리시간 0.034초

Effect of oil and aqueous extract of Neem (Azadirachta indica) seeds on growth of Aspergillus species and biosynthesis of aflatoxin

  • Rashid, Faraz;Naaz, Farah;Abdin, MZ;Zafar, Shadab;Javed, Saleem
    • Advances in Traditional Medicine
    • /
    • 제5권4호
    • /
    • pp.308-315
    • /
    • 2005
  • Aflatoxin contamination is a major problem in several food crops. Aflatoxin, a mycotoxin, produced by Aspergillus flavus has gained immense concern in the scientific world because of its tremendous harmful effects. The study was focused to see the effect of oil and aqueous extract of neem (Azadirachta indica) seeds on the growth of Aspergillus and production of aflatoxin by the mold. Various amounts of neem oil $(5\;-\;50\;{\mu}l/ml)$ and aqueous extract of neem (5 - 50 mg/ml) were used both in the broth as well as the solid medium. Fungistatic (MIC) and minimal fungicidal concentrations (MFC) were found to be $10\;{\mu}l/ml$ and $50\;{\mu}l/ml$ respectively for neem seed oil. At the concentration of $5\;{\mu}l/ml$ neem oil and 5 mg/ml of aqueous extract, a significant decrease in the aflatoxin content was found in broth medium. Aflatoxin production was totally inhibited at $50\;{\mu}l/ml$ and 50 mg/ml for neem oil and aqueous extract of neem respectively, in both treatments. There was significant inhibition of mycelium dry weight by the neem seed oil. Mycelial growth was totally inhibited at $20\;{\mu}l/ml$ of neem seed oil concentration in broth, whereas it was not affected at all by aqueous extract. It can therefore be inferred that the oil and extract from the neem seed leads to inhibition of aflatoxin production while neem seed oil also significantly inhibits the mycelial growth. Neem seed oil thus can be used as potent, natural and easily available anti-aflatoxigenic agent.

Effect of Neem (Azadirachta indica) oil on the progressive growth of a spontaneous T cell lymphoma

  • Mallick, Sanjaya Kumar;Gupta, Vivekanand;Singh, Mahendra Pal;Vishvakarma, Naveen Kumar;Singh, Nisha;Singh, Sukh Mahendra
    • Advances in Traditional Medicine
    • /
    • 제7권5호
    • /
    • pp.459-465
    • /
    • 2008
  • The present study was undertaken to investigate the effect of in vivo administration of neem oil intra-peritoneally (i.p.) to mice bearing a progressively growing transplantable T cell lymphoma of spontaneous origin, designated as Daltons lymphoma (DL), on the tumor growth. Mice were administered various doses of neem oil mixed in groundnut oil, which was used as a diluting vehicle or for administration to control DL-bearing mice. Administration of neem oil resulted in an acceleration of tumor growth along with a reduction in the survival time of the tumor-bearing host. Neem oil administered DL-bearing mice showed an augmented apoptosis in splenocytes, bone marrow cells and thymocytes along with an inhibition in the anti-tumor functions of tumor-associated macrophages. Thus this study gives an altogether a novel information that neem oil instead of the popular belief of being anti-tumor and immunoaugmentary may in some tumor-bearing conditions, behave in an opposite way leading to an accelarated tumor progression along with a collapse of the host's anti-tumor machinery. These observations will thus have long lasting clinical significance, suggesting caution in use of neem oil for treatment of cancer.

식물정유와 파라핀오일이 검거세미나방에 미치는 영향 (Effect of Essential Oils and Paraffin Oil on Black Cutworm, Agrotis ipsilon (Lepidoptera: Noctuidae))

  • 이동운
    • Weed & Turfgrass Science
    • /
    • 제2권1호
    • /
    • pp.62-69
    • /
    • 2013
  • 검거세미나방(Agrotis ipsilon)은 다양한 작물에 피해를 주며 특히 골프장 잔디에 심각한 피해를 주는 해충이다. 식물정유는 해충방제를 위한 대체방제제의 하나이다. 본 연구는 16종의 식물정유(anise, camphor, cinnamon, citronella, clove, fennel, geranium, lavender, lemongrass, linseed, neem, peppermint, pine, thyme, turpentine and tea saponin)와 파라핀오일의 검거세미나방에 대한 방제효과를 실내와 온실, 야외에서 검정하였다. 온실의 퍼레니얼라이그라스 pot에 각각의 정유를 처리한 결과 anis, cinnamon, neem, paraffin, turpentine 처리에서 잔디피해가 적었으며 neem oil (4,000, 2,000, 1,000 ppm) 처리시 검거세미나방 치사율은 각각 100, 100, 64%였다. 2,000 ppm neem oil처리 퍼레니얼라이그라스 잎을 섭식한 검거세미나방 유충의 체중은 무처리에 비해 5배정도 낮았다. 2~3령충 검거세미나방에 대하여 pot와 야외에서 고농도 neem oil 처리 후 관수가(20,000 ppm 0.1 L 처리 후 물 0.9 L $m^2$ 살포) 저농도의 다량살포 (2,000 ppm 1 L $m^2$)에 비하여 효과가 높았으나 4령충에 대해서는 효과가 없었다.

Neem과 mustard oil이 곤충병원성 선충과 누에에 미치는 영향 (Effect of Neem and Mustard oils on Entomopathogenic Nematodes and Silkworm)

  • 하판정;김태수;이신혜;추호렬;최성환;김영섭;이동운
    • 농약과학회지
    • /
    • 제14권1호
    • /
    • pp.54-64
    • /
    • 2010
  • 13종의 식물 정유(anise oil, clove oil, marigold, mustard oil, neem oil, quassia, quilaja, rosemary oil, rotenone, tea tree extract, thyme oil, wintergreen oil, and yucca)와 caffeine이 산업곤충인 누에(Bombyx mori)와 생물적 방제 인자의 하나인 곤충병원성 선충 Steinernema carpocapsae GSN-1 계통(Sc)과 Heterorhabditis sp. Gyeongsan 계통(Hg)에 미치는 영향을 실내 검정하였다. 1,000 ppm 농도의 식물체 추출물들 중 neem oil이 누에에 대한 살충활성이 가장 높았다. Neem oil을 처리한 뽕잎을 공급하였을 때, 급상 5일과 10일 후 누에의 치사율은 각각 55.3%와 100%였다. 그리고 neem oil이 처리된 뽕잎을 섭식한 누에는 번데기와 고치를 형성하지 못하였다. Rotenone을 처리한 뽕잎을 공급받은 누에의 고치와 번데기 무게는 각각 0.27 g과 1.01 g으로 가장 적었다. Mustard oil은 곤충병원성선충에 대하여 살선충 활성이 높았다. X-plate에서는 mustard oil 20 ppm 처리 시 곤충병원성선충 Sc와 Hg의 치사율이 처리 3일 후 각각 69.0%와 100%였으며 5 ppm 농도에서도 4%와 36%의 치사율을 보였다. Sand barrier에서 Sc를 100 ppm 농도의 mustard oil과 혼합 처리 시 꿀벌부채명나방(Galleria mellonella) 노숙 유충의 치사율은 무처리구와 차이가 없었으나 Hg의 경우는 무처리구에 비하여 30% 낮은 꿀벌부채명나방 치사율을 보였다. 꿀벌부채명나방 유충의 체내에 정착한 선충 수는 Hg가 Sc에 비하여 적었다. Sand barrier내 생존 Sc 선충 수는 200 ppm 이하 농도에서는 무처리구와 차이가 없었다.

Lysobacter enzymogenes LE429와 Neem oil을 이용한 고추 병해의 생물학적 방제 (Biocontrol of pepper diseases by Lysobacter enzymogenes LE429 and Neem Oil)

  • ;조민영;이용성;박윤석;박노동;남이;김길용
    • 한국토양비료학회지
    • /
    • 제43권4호
    • /
    • pp.490-497
    • /
    • 2010
  • 근권토양으로부터 고추역병균을 포함한 다양한 식물 병원성 곰팡이에 대하여 항균활성이 강한 세균을 분리하였다. 이 세균은 16S rRNA gene서열 분석 결과 Lysobacter enzymogens로 동정되었고 LE429로 명명 하였다. LE429는 chitinase, ${\beta}-1$, 3-glucanase, protease, gelatinase, lipase 및 항생물질과 같은 다양한 이차대사산물을 분비하였다. 항생물질은 diaon HP-20 및 sephadex LH-20 컬럼크로마토그래피 및 HPLC로 정제하여, GC-EI 및 GC-CI분석을 통하여 phenylacetic acid로 동정되었다. Field 실험에서 LE429의 고추 병해 억제 효과를 조사하기 위해 LE429배양액(CB), Neem oil 용액 (NO), LE429배양액과 Neem oil 용액을 섞은 혼합액(CB+NO), 그리고 대조구로서 물(CON)을 각각 고추에 처리하였다. 고추의 수량구성요소는 일반적으로 CB 처리구가 가장 높았고, CB+NO, CON 그리고 NO 순서로 나타났다. CB 처리구에서 병원성 곰팡이는 강하게 억제 되었지만, 몇몇 해충이 발견되었다. NO 처리구에서는 해충은 발견 되지 않았지만, 병원성 곰팡이가 발견 되었다. 하지만, CB+NO 처리구에서 병원성 곰팡이 및 해충이 전혀 발견 되지 않았다. 결론적으로, 2차 대 사산물을 생산하는 LE429와 Neem oil의 혼합액은 고추에 발생하는 병원성 곰팡이와 해충에 대한 좋은 생물학적 방제제가 될 수 있다고 사료된다.

Insecticidal Effect of Neem Cake Extracts on Cabbage Pests, Aphis gossypii and Pluetella xylostella

  • Lee. HoYong;Kim, Won-Rok;Min, Bong Hee
    • 환경생물
    • /
    • 제22권4호
    • /
    • pp.501-506
    • /
    • 2004
  • In organic agriculture, choose of effective and cheap bio-pesticide is very important. The authors developed an insecticidal extract from neem cake, waste of neem oil from kernel, and applied as a bio-pesticide. Bio-pesticide neem cake extracts experiment on cabbage pest was carried out at Wonju Agricultural Technology and Extension Center from 11 March to 30 May 2003. There were six treatments with three replications, using completely randomized design. Treatments involved three and six sprays of synthetic pyrethroid pesticide cypermethrin 10 EC at the dilution rate of 2.2 mL $L^{-1}$ of distilled water and four, five and six sprays of bio-pesticide neem at the dilution rate of 13.3 mL $L^{-1}$ of distilled water, and untreated control. For each treatment, designated sprayings were done at 7 days interval. Pre-spray data showed that the plants in all the experimental plots were already infested with aphid (Aphis gossypii), and diamondback moth (Pluetella xylostella). The results indicated that all neem pesticide treatments were more effective in insecticidal activity than the untreated control and the chemical treatments in controlling aphids and diamondback moth. Among the three neem treatments, there were no significant differences between them.

Microwave Absorption Study of Carbon Nano Materials Synthesized from Natural Oils

  • Kshirsagar, Dattatray E.;Puri, Vijaya;Sharon, Maheshwar;Sharon, Madhuri
    • Carbon letters
    • /
    • 제7권4호
    • /
    • pp.245-248
    • /
    • 2006
  • Thin films of carbon-nano materials (CNMs) of different morphology have been successfully deposited on ceramic substrate by CVD at temperatures $800^{\circ}C$, $850^{\circ}C$ and $900^{\circ}C$ using plant based oils in the presence of transition metal catalysts (Ni, Co and Ni/Co alloys). Based on the return and insertion loss, microwave absorption properties of thin film of nanocarbon material are measured using passive micro-Strip line components. The result indicates that amongst CNMs synthesized from oil of natural precursors (mustered oil - Brassica napus, Karanja oil - Pongamia glabra, Cotton oil - Gossipium hirsuta and Neem oil - Azadirachta indica) carbon nano fibers obtained from neem's seed oil showed better microwave absorption (~20dB) in the range of 8.0 GHz to 17.90 GHz.

  • PDF

Management of Tomato Root-knot Nematode Meloidogyne incognita by Plant Extracts and Essential Oils

  • Abo-Elyousr, Kamal A.M.;Awad, Magd El-Morsi;Gaid, M.A. Abdel
    • The Plant Pathology Journal
    • /
    • 제25권2호
    • /
    • pp.189-192
    • /
    • 2009
  • The effect of plant extracts of eucalyptus (Eucalyptus chamadulonsis), garlic (Allium sativium), marigold (Tagetes erecta) and neem (Azadirachta indica) and essential oils were tested on the suppression of root-knot nematode Meloidogyne incognita under greenhouse and field conditions. In vitro study, all tested treatments had nematicidal effect on nematode juveniles after 24 and 48 hours from exposures. The highest percentage of nematode mortality was achieved by application of neem extract (65.4%), essential oils (64.4%) and marigold extract (60.5%), followed by garlic and eucalyptus extracts (38.7-39.5%). Under greenhouse and field conditions, neem extract and essential oils treatments were more effective in reducing population numbers of the M. incognita in soil and root gall index compared to other treatments. In field experiments, the maximum protection of tomato plant against root-knot nematode was obtained by application of neem and essential oil treatments, 44.2 and 32.6%, respectively.

Neem (Azadirachta indica) Seed Cake in Animal Feeding-Scope and Limitations - Review -

  • Gowda, S.K.;Sastry, V.R.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권5호
    • /
    • pp.720-728
    • /
    • 2000
  • The different products of neem (Azadirachta indica) are utilized for variety of purposes in industry, health and animal agriculture in the Indian subcontinent. The cake from seeds after oil extraction is a good source of nutrients (CP: 35-38%; EE: 4.5-5.5%; CF: 12-15%; Ca: 0.75%; P: 0.45% on DM), and in particular, the one out of its kernel is proteinaceous and is relatively balanced in its amino acid and mineral profile. But the cake is toxic and bitter to taste owing to triterpenoids (nimbin, salannin, azadirachtin), which restricts its safe inclusion in livestock diet. Several feeding trials with raw cake have revealed poor palatability and adverse performance among different categories of livestock and poultry. Internal organ changes included histological alteration in intestine, liver, kidney and distruption of spermatogenesis and ovarian activity. Ruminants appears to tolerate reasonably higher levels of the cake and to a limited low levels of dietary inclusion also proved to be tolerable in monogastric farm animals. Debitterization through solvent (hexane, ether) extraction, water washing, alkali (NaOH, 1.5, 2.5 or 3%, wt/wt) soaking and urea (1.5 or 3%, wt/wt) - ammoniation have been tried with appreciable success in improving the palatability and nutritive value of the cake. For enhanced utilization, decortication of neem seeds is to be done effectively at industrial level with maximum oil recovery. The resultant proteinaceous kernel by-product could be a cheaper unconventional protein supplement after suitable processing.

Simultaneous Extraction and Separation of Oil and Azadirachtin from Seeds and Leaves of Azadirachta indica using Binary Solvent Extraction

  • Subramanian, Sheela;Salleh, Aiza Syuhaniz;Bachmann, Robert Thomas;Hossain, Md. Sohrab
    • Natural Product Sciences
    • /
    • 제25권2호
    • /
    • pp.150-156
    • /
    • 2019
  • Conventional extraction of oil and azadirachtin, a botanical insecticide, from Azadirachta indica involves defatting the seeds and leaves using hexane followed by azadirachtin extraction with a polar solvent. In order to simplify the process while maintaining the yield we explored a binary extraction approach using Soxhlet extraction device and hexane and ethanol as non-polar and polar solvents at various ratios and extraction times. The highest oil and azadirachtin yields were obtained at 6 h extraction time using a 50:50 solvent mixture for both neem leaves (44.7 wt%, $720mg_{Aza}/kg_{leaves}$) and seeds (53.5 wt%, $1045mg_{Aza}/kg_{leaves}$), respectively.