DOI QR코드

DOI QR Code

Immunological and Pathological Aspects of Respiratory Tract Infection with Stenotrophomonas maltophilia in BALB/c Mice

  • Received : 2010.03.06
  • Accepted : 2010.07.26
  • Published : 2010.11.28

Abstract

A comprehensive study on the production of inflammatory mediators in the lungs of BALB/c mice following infection with Stenotrophomonas maltophilia was conducted. The levels of pro-inflammatory cytokines, tumor necrosis factor alpha (TNF-${\alpha}$), and interleukin-1${\beta}$ (IL-1${\beta}$) were raised in the lungs of infected mice compared with control. The production of anti-inflammatory cytokine IL-10 was slightly delayed. Its peak level was on the $2^{nd}$ day, whereas the peak of pro-inflammatory cytokines was observed on day 1 after intranasal challenge. This was accompanied by a rise in myeloperoxidase (MPO) and malondialdehyde (MDA) on day 1. The increase in MPO levels matched with histopathological observations, as neutrophils infiltration was detected on the first day. Alveolar macrophages (AMs) obtained from infected animals showed a higher rate of uptake and killing when exposed to bacteria in vitro, compared with similar experiments conducted with AMs from normal mice (control). This suggests that AMs were more efficient in cleaning the bacteria. The nitric oxide (NO) production however started early during infection but reached its maximum on the $3^{rd}$ day. No mortality was observed among the infected animals, and infection was resolved by the $5^{th}$ day post infection. No drastic changes in the lung tissue were observed on histopathological examination.

Keywords

References

  1. Allen, P. M., D. Fisher, J. R. Saunders, and C. A. Hart. 1987. The role of capsular polysaccharide K21b of Klebsiella and of the structurally related colonic acid polysaccharide of Escherichia coli in resistance to phagocytosis and serum killing. J. Med. Microbiol. 24: 363-370. https://doi.org/10.1099/00222615-24-4-363
  2. Basu, S. and M. J. Fenton. 2004. Toll-like receptors: Function and roles in lung disease. Am. J. Physiol. Lung Cell Mol. Physiol. 286: L887-L892.
  3. Buddi, R., B. Lin, S. R. Atilano, N. C. Zorapapel, M. C. Kenney, and D. J. Brown. 2002. Evidence of oxidative stress in human corneal diseases. J. Histochem. Cytochem. 50: 341-351. https://doi.org/10.1177/002215540205000306
  4. Chhibber, S. and A. K. Zgair. 2009 Involvement of Stenotrophomonas maltophilia flagellin in bacterial adhesion to airway biotic surfaces: An in vitro study. Am. J. Biomed. Sci. 1: 188-195.
  5. Denton, M. and K. G. Kerr. 1998. Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia. Clin. Microbiol. Rev. 11: 57-80.
  6. Franchi, L., A. Amer, M. Body-Malapel, T. D. Kanneganti, N. Ozoren, R. Jagirdar, et al. 2006. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1$\beta$ in Salmonellainfected macrophages. Nat. Immunol. 7: 576-582. https://doi.org/10.1038/ni1346
  7. Goss, C. H., K. Otto, M. L. Aitken, and G. D. Rubenfeld. 2002. Detecting Stenotrophomonas maltophilia does not reduce survival of patients with cystic fibrosis. Am. J. Respir. Crit. Care Med. 166: 356-361. https://doi.org/10.1164/rccm.2109078
  8. Gutierrez, H. H., B. R. Pitt, M. Schwarz, S. C. Watkins, C. Lowenstein, I. Caniggia, P. Chumley, and B. A. Freeman. 1995. Pulmonary alveolar epithelial inducible NO synthase gene expression: Regulation by inflammatory mediators. Am. J. Physiol. 268: L501-L508.
  9. Henderson, B., S. Poole, and M. Wilson. 1996. Bacterial modulins: A novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Microbiol. Rev. 60: 316-341.
  10. Hirano, S. 1996. Migratory responses of PMN after intraperitoneal and intratracheal administration of lipopolysaccharide. Am. J. Physiol. Lung Cell Mol. Physiol. 270: L836-L845.
  11. Janeway, C. A. and R. Medzhitov. 2002. Innate immune recognition. Annu. Rev. Immunol. 20: 197-216. https://doi.org/10.1146/annurev.immunol.20.083001.084359
  12. Kumar, M. V., H. Wu, R. Jones, G. Grant, B. Babbin, T. P. King, D. Kelly, A. Gewirtz, and A. S. Neish. 2006. Flagellin suppresses epithelial apoptosis and limits disease during enteric infection. Am. J. Pathol. 169: 1686-1700. https://doi.org/10.2353/ajpath.2006.060345
  13. Looney, W. J. 2005. Role of Stenotrophomonas maltophilia in hospital-acquired infection. Br. J. Biomed. Sci. 62: 145-154.
  14. Lowry, O. H., N. J. Rosenbrough, L. A. Farr, and R. J. Randall. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193: 265-275.
  15. Lu, W., A. Hisatsune, T. Koga, K. Kato, I. Kuwahara, E. P. Lillehoj, et al. 2006. Cutting edge: Enhanced pulmonary clearance of Pseudomonas aeruginosa by Muc1 knockout mice. J. Immunol. 176: 3890-3894.
  16. Lyons, C. R. 1995. The role of nitric oxide in inflammation. Adv. Immunol. 60: 323-355. https://doi.org/10.1016/S0065-2776(08)60589-1
  17. Medan, D., L. Wang, X. Yang, S. Dokka, V. Castranova, and Y. Rojanasakul. 2002. Induction of neutrophil apoptosis and secondary necrosis during endotoxin-induced pulmonary inflammation in mice. J. Cell Physiol. 191: 320-326. https://doi.org/10.1002/jcp.10105
  18. Mohler, J., E. Azoulay-Dupuis, C. Amory-River, J. X. Mazoit, J. P. P. Bedos, V. Rieux, and P. Moine. 2003. Streptococcus pneumoniae strain-dependent lung inflammatory responses in a murine model of pneumonia. Intensive Care Med. 29: 808-816.
  19. Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  20. Pathmanathan, A. and G. W. Waterer. 2005. Significance of positive Stenotrophomonas maltophilia culture in acute respiratory tract infection. Eur. Respir. J. 25: 911-914. https://doi.org/10.1183/09031936.05.00096704
  21. Schneider, T. and A. C. Issekutz. 1996. Quantitation of eosinophil and neutrophil infiltration into rat lung by specific assays for eosinophil peroxidase and myeloperoxidase. Application in a Brown Norway rat model of allergic pulmonary inflammation. J. Immunol. Methods 198: 1-14. https://doi.org/10.1016/0022-1759(96)00143-3
  22. Senol, E. 2004. Stenotrophomonas maltophilia: The significance and role as a nosocomial pathogen. J. Hosp. Infect. 57: 1-7. https://doi.org/10.1016/j.jhin.2004.01.033
  23. Sha, Q., A. Q. Truong-Tran, J. R. Plitt, L. A. Beck, and R. P. Schleimer. 2004. Activation of airway epithelial cells by Tolllike receptor agonists. Am. J. Respir. Cell Mol. Biol. 31: 358- 364. https://doi.org/10.1165/rcmb.2003-0388OC
  24. Sharan, R. and S. Chhibber. 2009. A murine pneumonia model to study pathogenesis of Stenotrophomonas maltophilia. World J. Microbiol. Biotechnol. 26: 795-803.
  25. Sugar, A. M., E. Brummer, and D. A. Stevens. 1983. Murine pulmonary macrophages. Evaluation of lung lavage fluids, miniaturized monolayers and candidacidal activity. Am. Rev. Respir. Dis. 27: 110-112.
  26. Tan, G. G., Y. Liu, S. P. Sivalingam, S. H. Sim, D. Wang, J. C. Paucod, Y. Gauthier, and E. E. Ooi. 2008. Burkholderia pseudomallei aerosol infection results in differential inflammatory responses in BALB/c and C57BI/6 mice. J. Med. Microbiol. 57: 508-515. https://doi.org/10.1099/jmm.0.47596-0
  27. Tiku, M. L., H. Narla, M. Jain, and P. Yalamanchili. 2007. Glucosamine prevents in vitro collagen degradation in chondrocytes by inhibiting advanced lipoxidation reactions and protein oxidation. Arthritis Res. Ther. 9: R76. https://doi.org/10.1186/ar2274
  28. Tsai, W. C., R. M. Strieter, D. A. Zisman, J. M. Wilkowski, K. A. Bucknell, G. H. Chen, and T. J. Standiford. 1997. Nitric oxide is required for effective innate immunity against Klebsiella pneumoniae. Infect. Immun. 65: 1870-1875.
  29. Waters, V. J., M. I. Gómez, G. Soong, S. Amin, R. K. Ernst, and A. Prince. 2007 Immunostimulatory properties of the emerging pathogen Stenotrophomonas maltophilia. Infect. Immun. 75: 1698-1703. https://doi.org/10.1128/IAI.01469-06
  30. Willis, R. A., A. K. Nussler, K. M. Fries, D. A. Geller, and R. P. Phipps. 1994. Induction of nitric oxide synthase in subsets of murine pulmonary fibroblasts: Effect on fibroblast interleukin-6 production. Clin. Immunol. Immunopathol. 71: 231-239. https://doi.org/10.1006/clin.1994.1077
  31. Wizemann, T. M. and D. L. Laskin. 1994. Effects of acute endotoxemia on production of cytokines and nitric oxide by pulmonary alveolar and interstitial macrophages. Ann. N.Y. Acad. Sci. 730: 336-337. https://doi.org/10.1111/j.1749-6632.1994.tb44284.x

Cited by

  1. Stenotrophomonas maltophilia strains replicate and persist in the murine lung, but to significantly different degrees vol.157, pp.7, 2011, https://doi.org/10.1099/mic.0.048157-0
  2. Flagellin Administration Protects Respiratory Tract from Burkholderia cepacia Infection vol.22, pp.7, 2010, https://doi.org/10.4014/jmb.1112.11079
  3. Stenotrophomonas maltophilia flagellin restricts bacterial colonization in BALB/c mouse lung in vivo vol.66, pp.2, 2010, https://doi.org/10.1111/j.1574-695x.2012.00999.x
  4. Type II Secretion-Dependent Degradative and Cytotoxic Activities Mediated by Stenotrophomonas maltophilia Serine Proteases StmPr1 and StmPr2 vol.83, pp.10, 2010, https://doi.org/10.1128/iai.00672-15
  5. Stenotrophomonas maltophilia produces an EntC-dependent catecholate siderophore that is distinct from enterobactin vol.163, pp.11, 2010, https://doi.org/10.1099/mic.0.000545
  6. Stenotrophomonas maltophilia Encodes a VirB/VirD4 Type IV Secretion System That Modulates Apoptosis in Human Cells and Promotes Competition against Heterologous Bacteria, Including Pseudomonas aerugin vol.87, pp.9, 2010, https://doi.org/10.1128/iai.00457-19