Browse > Article
http://dx.doi.org/10.4014/jmb.1003.03013

Immunological and Pathological Aspects of Respiratory Tract Infection with Stenotrophomonas maltophilia in BALB/c Mice  

Zgair, Ayaid Khadem (Department of Microbiology, BMS Block, Panjab University)
Chhibber, Sanjay (Department of Microbiology, BMS Block, Panjab University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.11, 2010 , pp. 1585-1591 More about this Journal
Abstract
A comprehensive study on the production of inflammatory mediators in the lungs of BALB/c mice following infection with Stenotrophomonas maltophilia was conducted. The levels of pro-inflammatory cytokines, tumor necrosis factor alpha (TNF-${\alpha}$), and interleukin-1${\beta}$ (IL-1${\beta}$) were raised in the lungs of infected mice compared with control. The production of anti-inflammatory cytokine IL-10 was slightly delayed. Its peak level was on the $2^{nd}$ day, whereas the peak of pro-inflammatory cytokines was observed on day 1 after intranasal challenge. This was accompanied by a rise in myeloperoxidase (MPO) and malondialdehyde (MDA) on day 1. The increase in MPO levels matched with histopathological observations, as neutrophils infiltration was detected on the first day. Alveolar macrophages (AMs) obtained from infected animals showed a higher rate of uptake and killing when exposed to bacteria in vitro, compared with similar experiments conducted with AMs from normal mice (control). This suggests that AMs were more efficient in cleaning the bacteria. The nitric oxide (NO) production however started early during infection but reached its maximum on the $3^{rd}$ day. No mortality was observed among the infected animals, and infection was resolved by the $5^{th}$ day post infection. No drastic changes in the lung tissue were observed on histopathological examination.
Keywords
Pro-inflammatory; anti-inflammatory; cytokines; Stenotrophomonas maltophilia; innate immunity;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Kumar, M. V., H. Wu, R. Jones, G. Grant, B. Babbin, T. P. King, D. Kelly, A. Gewirtz, and A. S. Neish. 2006. Flagellin suppresses epithelial apoptosis and limits disease during enteric infection. Am. J. Pathol. 169: 1686-1700.   DOI   ScienceOn
2 Looney, W. J. 2005. Role of Stenotrophomonas maltophilia in hospital-acquired infection. Br. J. Biomed. Sci. 62: 145-154.
3 Henderson, B., S. Poole, and M. Wilson. 1996. Bacterial modulins: A novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Microbiol. Rev. 60: 316-341.
4 Hirano, S. 1996. Migratory responses of PMN after intraperitoneal and intratracheal administration of lipopolysaccharide. Am. J. Physiol. Lung Cell Mol. Physiol. 270: L836-L845.
5 Janeway, C. A. and R. Medzhitov. 2002. Innate immune recognition. Annu. Rev. Immunol. 20: 197-216.   DOI   ScienceOn
6 Basu, S. and M. J. Fenton. 2004. Toll-like receptors: Function and roles in lung disease. Am. J. Physiol. Lung Cell Mol. Physiol. 286: L887-L892.
7 Goss, C. H., K. Otto, M. L. Aitken, and G. D. Rubenfeld. 2002. Detecting Stenotrophomonas maltophilia does not reduce survival of patients with cystic fibrosis. Am. J. Respir. Crit. Care Med. 166: 356-361.   DOI   ScienceOn
8 Gutierrez, H. H., B. R. Pitt, M. Schwarz, S. C. Watkins, C. Lowenstein, I. Caniggia, P. Chumley, and B. A. Freeman. 1995. Pulmonary alveolar epithelial inducible NO synthase gene expression: Regulation by inflammatory mediators. Am. J. Physiol. 268: L501-L508.
9 Denton, M. and K. G. Kerr. 1998. Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia. Clin. Microbiol. Rev. 11: 57-80.
10 Franchi, L., A. Amer, M. Body-Malapel, T. D. Kanneganti, N. Ozoren, R. Jagirdar, et al. 2006. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1$\beta$ in Salmonellainfected macrophages. Nat. Immunol. 7: 576-582.   DOI   ScienceOn
11 Buddi, R., B. Lin, S. R. Atilano, N. C. Zorapapel, M. C. Kenney, and D. J. Brown. 2002. Evidence of oxidative stress in human corneal diseases. J. Histochem. Cytochem. 50: 341-351.   DOI   ScienceOn
12 Chhibber, S. and A. K. Zgair. 2009 Involvement of Stenotrophomonas maltophilia flagellin in bacterial adhesion to airway biotic surfaces: An in vitro study. Am. J. Biomed. Sci. 1: 188-195.
13 Sha, Q., A. Q. Truong-Tran, J. R. Plitt, L. A. Beck, and R. P. Schleimer. 2004. Activation of airway epithelial cells by Tolllike receptor agonists. Am. J. Respir. Cell Mol. Biol. 31: 358- 364.   DOI   ScienceOn
14 Allen, P. M., D. Fisher, J. R. Saunders, and C. A. Hart. 1987. The role of capsular polysaccharide K21b of Klebsiella and of the structurally related colonic acid polysaccharide of Escherichia coli in resistance to phagocytosis and serum killing. J. Med. Microbiol. 24: 363-370.   DOI
15 Waters, V. J., M. I. Gómez, G. Soong, S. Amin, R. K. Ernst, and A. Prince. 2007 Immunostimulatory properties of the emerging pathogen Stenotrophomonas maltophilia. Infect. Immun. 75: 1698-1703.   DOI   ScienceOn
16 Willis, R. A., A. K. Nussler, K. M. Fries, D. A. Geller, and R. P. Phipps. 1994. Induction of nitric oxide synthase in subsets of murine pulmonary fibroblasts: Effect on fibroblast interleukin-6 production. Clin. Immunol. Immunopathol. 71: 231-239.   DOI   ScienceOn
17 Wizemann, T. M. and D. L. Laskin. 1994. Effects of acute endotoxemia on production of cytokines and nitric oxide by pulmonary alveolar and interstitial macrophages. Ann. N.Y. Acad. Sci. 730: 336-337.   DOI
18 Tan, G. G., Y. Liu, S. P. Sivalingam, S. H. Sim, D. Wang, J. C. Paucod, Y. Gauthier, and E. E. Ooi. 2008. Burkholderia pseudomallei aerosol infection results in differential inflammatory responses in BALB/c and C57BI/6 mice. J. Med. Microbiol. 57: 508-515.   DOI   ScienceOn
19 Tiku, M. L., H. Narla, M. Jain, and P. Yalamanchili. 2007. Glucosamine prevents in vitro collagen degradation in chondrocytes by inhibiting advanced lipoxidation reactions and protein oxidation. Arthritis Res. Ther. 9: R76.   DOI   ScienceOn
20 Tsai, W. C., R. M. Strieter, D. A. Zisman, J. M. Wilkowski, K. A. Bucknell, G. H. Chen, and T. J. Standiford. 1997. Nitric oxide is required for effective innate immunity against Klebsiella pneumoniae. Infect. Immun. 65: 1870-1875.
21 Sharan, R. and S. Chhibber. 2009. A murine pneumonia model to study pathogenesis of Stenotrophomonas maltophilia. World J. Microbiol. Biotechnol. 26: 795-803.
22 Lowry, O. H., N. J. Rosenbrough, L. A. Farr, and R. J. Randall. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193: 265-275.
23 Sugar, A. M., E. Brummer, and D. A. Stevens. 1983. Murine pulmonary macrophages. Evaluation of lung lavage fluids, miniaturized monolayers and candidacidal activity. Am. Rev. Respir. Dis. 27: 110-112.
24 Schneider, T. and A. C. Issekutz. 1996. Quantitation of eosinophil and neutrophil infiltration into rat lung by specific assays for eosinophil peroxidase and myeloperoxidase. Application in a Brown Norway rat model of allergic pulmonary inflammation. J. Immunol. Methods 198: 1-14.   DOI   ScienceOn
25 Senol, E. 2004. Stenotrophomonas maltophilia: The significance and role as a nosocomial pathogen. J. Hosp. Infect. 57: 1-7.   DOI   ScienceOn
26 Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351-358.   DOI   ScienceOn
27 Pathmanathan, A. and G. W. Waterer. 2005. Significance of positive Stenotrophomonas maltophilia culture in acute respiratory tract infection. Eur. Respir. J. 25: 911-914.   DOI   ScienceOn
28 Lyons, C. R. 1995. The role of nitric oxide in inflammation. Adv. Immunol. 60: 323-355.   DOI
29 Medan, D., L. Wang, X. Yang, S. Dokka, V. Castranova, and Y. Rojanasakul. 2002. Induction of neutrophil apoptosis and secondary necrosis during endotoxin-induced pulmonary inflammation in mice. J. Cell Physiol. 191: 320-326.   DOI   ScienceOn
30 Mohler, J., E. Azoulay-Dupuis, C. Amory-River, J. X. Mazoit, J. P. P. Bedos, V. Rieux, and P. Moine. 2003. Streptococcus pneumoniae strain-dependent lung inflammatory responses in a murine model of pneumonia. Intensive Care Med. 29: 808-816.
31 Lu, W., A. Hisatsune, T. Koga, K. Kato, I. Kuwahara, E. P. Lillehoj, et al. 2006. Cutting edge: Enhanced pulmonary clearance of Pseudomonas aeruginosa by Muc1 knockout mice. J. Immunol. 176: 3890-3894.