DOI QR코드

DOI QR Code

Isolation, Characterization, and Use for Plant Growth Promotion Under Salt Stress, of ACC Deaminase-Producing Halotolerant Bacteria Derived from Coastal Soil

  • Siddikee, M.A. (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Chauhan, P.S. (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Anandham, R. (Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University) ;
  • Han, Gwang-Hyun (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • Received : 2010.07.07
  • Accepted : 2010.07.29
  • Published : 2010.11.28

Abstract

In total, 140 halotolerant bacterial strains were isolated from both the soil of barren fields and the rhizosphere of six naturally growing halophytic plants in the vicinity of the Yellow Sea, near the city of Incheon in the Republic of Korea. All of these strains were characterized for multiple plant growth promoting traits, such as the production of indole acetic acid (IAA), nitrogen fixation, phosphorus (P) and zinc (Zn) solubilization, thiosulfate ($S_2O_3$) oxidation, the production of ammonia ($NH_3$), and the production of extracellular hydrolytic enzymes such as protease, chitinase, pectinase, cellulase, and lipase under in vitro conditions. From the original 140 strains tested, on the basis of the latter tests for plant growth promotional activity, 36 were selected for further examination. These 36 halotolerant bacterial strains were then tested for 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Twenty-five of these were found to be positive, and to be exhibiting significantly varying levels of activity. 16S rRNA gene sequencing analyses of the 36 halotolerant strains showed that they belong to 10 different bacterial genera: Bacillus, Brevibacterium, Planococcus, Zhihengliuella, Halomonas, Exiguobacterium, Oceanimonas, Corynebacterium, Arthrobacter, and Micrococcus. Inoculation of the 14 halotolerant bacterial strains to ameliorate salt stress (150 mM NaCl) in canola plants produced an increase in root length of between 5.2% and 47.8%, and dry weight of between 16.2% and 43%, in comparison with the uninoculated positive controls. In particular, three of the bacteria, Brevibacterium epidermidis RS15, Micrococcus yunnanensis RS222, and Bacillus aryabhattai RS341, all showed more than 40% increase in root elongation and dry weight when compared with uninoculated salt-stressed canola seedlings. These results indicate that certain halotolerant bacteria, isolated from coastal soils, have a real potential to enhance plant growth under saline stress, through the reduction of ethylene production via ACC deaminase activity.

Keywords

References

  1. Abrol, I. P., J. S. P. Yadav, and F. I. Massoud. 1988. Salt Affected Soils and Their Management, p. 39. Food and Agriculture Organization (FAO), UN, Soils Bulletin, Rome.
  2. Anandham, R., R. Sridar, P. Nalayini, S. Poonguzhali, M. Madhaiyan, and T. M. Sa. 2007. Potential for plant growth promotion in groundnut (Arachis hypogaea L.) cv. ALR-2 by co-inoculation of sulfur-oxidizing bacteria and Rhizobium. Microbiol. Res. 162: 139-153 https://doi.org/10.1016/j.micres.2006.02.005
  3. Basha, S. and K. Ulaganathan. 2002. Antagonism of Bacillus species (strains 121) towards Curvularia lunata. Curr. Sci. 82: 1457-1463.
  4. Bayliss, C., E. Bent, D. E. Culham, S. MacLellan, A. J. Clarke, G. L. Brown, and J. M. Wood. 1997. Bacterial genetic loci implicated in the Pseudomonas putida GR12-2R3-canola mutualism: Identification of an exudate-inducible sugar transporter. Can. J. Microbiol. 43: 809-818. https://doi.org/10.1139/m97-118
  5. Belimov, A. A., V. I. Safronova, T. A. Sergeyeva, T. N. Egorova, V. A. Matveyeva, V. E. Tsyganov, et al. 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 47: 642-652. https://doi.org/10.1139/w01-062
  6. Brick, J. M., R. M. Bostock, and S. E. Silverstone. 1991. Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Appl. Environ. Microbiol. 57: 535-538.
  7. Brisou, J., D. Courtois, and F. Denis. 1974. Microbiological study of a hypersaline lake in French Somaliland. Appl. Microbiol. 27: 819-822.
  8. Cheng, Z., E. Park, and B. R. Glick. 2007. 1-Aminocyclopropane- 1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can. J. Microbiol. 53: 912-918. https://doi.org/10.1139/W07-050
  9. DasGupta, S. M., N. Khan, and C. S. Nautiyal. 2006. Biologic control ability of plant growth-promoting Paenibacillus lentimorbus NRRL B-30488 isolated from milk. Curr. Microbiol. 53: 502-505. https://doi.org/10.1007/s00284-006-0261-9
  10. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
  11. Gerhardt, P., R. G. E. Murray, W. A. Wood, and N. R. Krieg. 1994. In: Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC.
  12. Giongo, A., A. Ambrosini, L. K. Vargas, J. R. J. Freire, M. H. Bodanese-Zanettini, and L. M. P. Passaglia. 2008. Evaluation of genetic diversity of Bradyrhizobia strains nodulating soybean [Glycine max (L.) Merrill] isolated from South Brazilian fields. Appl. Soil Ecol. 38: 261-269. https://doi.org/10.1016/j.apsoil.2007.10.016
  13. Glick, B. R., Z. Cheng, J. Czarny, and J. Duan. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. 119: 329-339 https://doi.org/10.1007/s10658-007-9162-4
  14. Glick, B. R. 2004. Bacterial ACC deaminase and the alleviation of plant stress. Adv. Appl. Microbiol. 56: 291-312. https://doi.org/10.1016/S0065-2164(04)56009-4
  15. Glick, B. R., D. M. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J. Theor. Biol. 190: 63-68. https://doi.org/10.1006/jtbi.1997.0532
  16. Glick, B. R. 1995. The enhancement of plant growth by freeliving bacteria. Can. J. Microbiol. 41: 109-117. https://doi.org/10.1139/m95-015
  17. Grichko, V. P. and B. R. Glick. 2001. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol. Biochem. 39: 11-17. https://doi.org/10.1016/S0981-9428(00)01212-2
  18. Gothwal, R. K., V. K. Nigam, M. K. Mohan, D. Sasmal, and P. Ghosh. 2007. Screening of nitrogen fixers from rhizospheric bacterial strains associated with important desert plants. Appl. Ecol. Environ. Res. 6: 101-109. https://doi.org/10.1016/S1569-3740(06)06006-8
  19. Hariprasad, P. and S. R. Niranjana. 2009. Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil 316: 13-24. https://doi.org/10.1007/s11104-008-9754-6
  20. Indiragandhi, P., R. Anandham, K. Kim, W. Yim, M. Madhaiyan, and T. M. Sa. 2008. Induction of defense responses in tomato against Pseudomonas syringae pv. tomato by regulating the stress ethylene level with Methylobacterium oryzae CBMB20 containing 1-aminocyclopropane-1-carboxylate deaminase. World J. Microbiol. Biotechnol. 24: 1037-1045. https://doi.org/10.1007/s11274-007-9572-7
  21. Indiragandhi, P., R. Anandham, M. Madhaiyan, and T. M. Sa. 2007. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamond back moth Plutella xylostella (Lepidoptera: Plutellidae). Curr. Microbiol. 56: 327-333.
  22. Iqbal, U., N. Jamil, I. Ali, and S. Hasnain. 2010. Effect of zincphosphate- solubilizing bacterial strains on growth of Vigna radiata. Ann. Microbiol. 61: 1869-2044.
  23. Kang, S. M., G. J. Joo, M. Hamayun, C. I. Na, D. H. Shin, H. Y. Kim, J. K. Hong, and I. J. Lee. 2009. Gibberellin production and phosphate solubilization by newly isolated strains of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol. Lett. 31: 277-281. https://doi.org/10.1007/s10529-008-9867-2
  24. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
  25. Krause, M. S., T. J. J. De-Ceuster, S. M. Tiquia, F. C. Jr. Michel, L. V. Madden, and H. A. J. Hoitink. 2003. Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish. Phytopathology 93: 1292-1300. https://doi.org/10.1094/PHYTO.2003.93.10.1292
  26. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5: 150-163. https://doi.org/10.1093/bib/5.2.150
  27. Larsen, H. 1986. Halophilic and halotolerant microorganisms - an overview and historical perspective. FEMS Microbiol. Rev. 39: 3-7. https://doi.org/10.1111/j.1574-6968.1986.tb01835.x
  28. Li, J., D. H. Ovakim, T. C. Charles, and B. R. Glick. 2000. An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr. Microbiol. 41: 101-105. https://doi.org/10.1007/s002840010101
  29. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with Folin-phenol reagent. J. Biol. Chem. 193: 265-275.
  30. Lynch, J. M. and J. M. Whipps. 1991. Substrate flow in the rhizosphere, pp. 15-24. In D. L. Keister and B. Cregan (eds.). The Rhizosphere and Plant Growth. Kluwer, Dordrecht.
  31. Madhaiyan, M., S. Poonguzhali, J. Ryu, and T. M. Sa. 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224: 268-278. https://doi.org/10.1007/s00425-005-0211-y
  32. Mayak, S., T. Tirosh, and B. R. Glick. 2004. Plant growthpromoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem. 42: 565-572. https://doi.org/10.1016/j.plaphy.2004.05.009
  33. Patten, C. L. and B. R. Glick. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68: 3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  34. Penrose, D. M. and B. R. Glick. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growthpromoting rhizobacteria. Physiol. Plant 118: 10-15. https://doi.org/10.1034/j.1399-3054.2003.00086.x
  35. Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17: 362-370.
  36. Reed, M. L. E. and B. R. Glick. 2005. Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can. J. Microbiol. 51: 1061-1069. https://doi.org/10.1139/w05-094
  37. Rohban, R., M. A. Amoozegar, and A. Ventosa. 2009. Screening and isolation of halotolerant bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J. Ind. Microbiol. Biotechnol. 36: 333-340. https://doi.org/10.1007/s10295-008-0500-0
  38. Sambrook, J., E. F. Fritsch, and T. Maniatis, (eds.). 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, New York, USA.
  39. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  40. Swain, M. R., R. C. Ray, and C. S. Nautiyal. 2008. Biocontrol efficacy of Bacillus subtilis strains isolated from cow dung against postharvest yam (Dioscorea rotundata L.) pathogens. Curr. Microbiol. 57: 407-411. https://doi.org/10.1007/s00284-008-9213-x
  41. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  42. Upadhyay, S. K., D. P. Singh, and R. Saikia. 2009. Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr. Microbiol. 59: 489-496. https://doi.org/10.1007/s00284-009-9464-1
  43. Wani, P. A., M. S. Khan, and A. Zaidi. 2007. Chromium reduction, plant growth-promoting potentials, and metal solubilization by Bacillus sp. isolated from alluvial soil. Curr. Microbiol. 54: 237-243. https://doi.org/10.1007/s00284-006-0451-5
  44. Waino, M., B. J. Tindall, P. Schumann, and K. Ingvorsen. 1999. Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int. J. Syst. Bacteriol. 49: 821-831. https://doi.org/10.1099/00207713-49-2-821
  45. Zahir, A. Z., U. Ghani, M. Naveed, S. M. Nadeem, and H. N. Asghar. 2009. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch. Microbiol. 191: 415-424. https://doi.org/10.1007/s00203-009-0466-y
  46. Zhu, J. K. 2001. Plant salt tolerance. Trends Plant Sci. 6: 66-71. https://doi.org/10.1016/S1360-1385(00)01838-0

Cited by

  1. Biotechnological uses of desiccation-tolerant microorganisms for the rhizoremediation of soils subjected to seasonal drought vol.91, pp.5, 2010, https://doi.org/10.1007/s00253-011-3461-6
  2. Isolation and performance evaluation of halotolerant phosphate solubilizing bacteria from the rhizospheric soils of historic Dagong Brine Well in China vol.27, pp.11, 2010, https://doi.org/10.1007/s11274-011-0736-0
  3. Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth vol.47, pp.8, 2010, https://doi.org/10.1007/s00374-011-0598-5
  4. ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems vol.56, pp.2, 2010, https://doi.org/10.1007/s13199-012-0162-6
  5. Characterization of microflora in Latin-style cheeses by next-generation sequencing technology vol.12, pp.None, 2010, https://doi.org/10.1186/1471-2180-12-254
  6. A Drought Resistance-Promoting Microbiome Is Selected by Root System under Desert Farming vol.7, pp.10, 2010, https://doi.org/10.1371/journal.pone.0048479
  7. Plant Growth-Promoting Bacteria: Mechanisms and Applications vol.2012, pp.None, 2010, https://doi.org/10.6064/2012/963401
  8. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress vol.43, pp.3, 2010, https://doi.org/10.1590/s1517-838220120003000046
  9. Spore Associated Bacteria (SAB) of Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth Promoting Rhizobacteria (PGPR) Increase Nutrient Uptake and Plant Growth Under Stress Conditions vol.45, pp.4, 2012, https://doi.org/10.7745/kjssf.2012.45.4.582
  10. Expression of an exogenous 1‐aminocyclopropane‐1‐carboxylate deaminase gene in Mesorhizobium spp. reduces the negative effects of salt stress in chickpea vol.349, pp.1, 2010, https://doi.org/10.1111/1574-6968.12294
  11. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms vol.37, pp.5, 2010, https://doi.org/10.1111/1574-6976.12028
  12. Plant growth in Arabidopsis is assisted by compost soil-derived microbial communities vol.4, pp.None, 2010, https://doi.org/10.3389/fpls.2013.00235
  13. Potential for Plant Growth Promotion of Rhizobacteria Associated with Salicornia Growing in Tunisian Hypersaline Soils vol.2013, pp.None, 2010, https://doi.org/10.1155/2013/248078
  14. Plant Growth Promotion Potential Is Equally Represented in Diverse Grapevine Root-Associated Bacterial Communities from Different Biopedoclimatic Environments vol.2013, pp.None, 2010, https://doi.org/10.1155/2013/491091
  15. Effects of actinobacteria on plant disease suppression and growth promotion vol.97, pp.22, 2010, https://doi.org/10.1007/s00253-013-5206-1
  16. Plant growth promoting bacteria from Crocus sativus rhizosphere vol.29, pp.12, 2010, https://doi.org/10.1007/s11274-013-1393-2
  17. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review vol.34, pp.4, 2010, https://doi.org/10.1007/s13593-014-0233-6
  18. Bacteria with ACC deaminase can promote plant growth and help to feed the world vol.169, pp.1, 2010, https://doi.org/10.1016/j.micres.2013.09.009
  19. Effect of co-inoculation of Brevibacterium iodinum RS16 and Methylobacterium oryzae CBMB20 on the early growth of crop plants in Saemangeum reclaimed soil vol.47, pp.1, 2014, https://doi.org/10.7745/kjssf.2014.47.1.001
  20. New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance vol.9, pp.6, 2010, https://doi.org/10.1371/journal.pone.0099168
  21. ACC Deaminase Producing Arsenic Tolerant Bacterial Effect on Mitigation of Stress Ethylene Emission in Maize Grown in an Arsenic Polluted Soil vol.47, pp.3, 2010, https://doi.org/10.7745/kjssf.2014.47.3.213
  22. Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea vol.21, pp.15, 2010, https://doi.org/10.1007/s11356-014-2852-5
  23. Revegetation of barren lakeside land through growth enhancement of Xanthium italicum by rhizobacteria vol.12, pp.suppl1, 2014, https://doi.org/10.1007/s10333-014-0428-0
  24. Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’ tomato plants vol.117, pp.3, 2010, https://doi.org/10.1111/jam.12563
  25. Effect of soil salinity and nutrient levels on the community structure of the root-associated bacteria of the facultative halophyte, Tamarix ramosissima, in southwestern United States vol.61, pp.5, 2010, https://doi.org/10.2323/jgam.61.193
  26. The Date Palm Tree Rhizosphere Is a Niche for Plant Growth Promoting Bacteria in the Oasis Ecosystem vol.2015, pp.None, 2010, https://doi.org/10.1155/2015/153851
  27. 순천만 칠면초의 근권으로부터 분리된 해양세균의 다양성 및 계통학적 분석 vol.25, pp.2, 2010, https://doi.org/10.5352/jls.2015.25.2.189
  28. 독도 해안식물로부터 분리된 호염성 세균들의 특성 및 계통학적 분석 vol.51, pp.1, 2010, https://doi.org/10.7845/kjm.2015.5008
  29. 순천만에 자생하는 염생식물 근권에서 유래한 해양세균의 계통학적 분석 및 다양성 vol.43, pp.1, 2010, https://doi.org/10.4014/mbl.1501.01004
  30. Isolation of heterotrophic thiosulfate-oxidizing bacteria and their role in a conserved tidal flat in the Ariake Sea, Japan vol.7, pp.4, 2010, https://doi.org/10.5897/jene2015.0504
  31. Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance vol.107, pp.6, 2015, https://doi.org/10.1007/s10482-015-0445-z
  32. Halotolerant PGPRs Prevent Major Shifts in Indigenous Microbial Community Structure Under Salinity Stress vol.70, pp.1, 2010, https://doi.org/10.1007/s00248-014-0557-4
  33. Potential of endophytes from medicinal plants for biocontrol and plant growth promotion vol.82, pp.3, 2016, https://doi.org/10.1007/s10327-016-0648-9
  34. Changes in volatiles in carrots inoculated with ACC deaminase-producing bacteria isolated from organic crops vol.407, pp.1, 2010, https://doi.org/10.1007/s11104-015-2769-x
  35. Biodegradation of fluoranthene by a newly isolated strain of Bacillus stratosphericus from Mediterranean seawater of the Sfax fishing harbour, Tunisia vol.23, pp.15, 2010, https://doi.org/10.1007/s11356-016-6648-7
  36. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat ( Triticum aestivum ) vol.47, pp.3, 2010, https://doi.org/10.1016/j.bjm.2016.04.001
  37. Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillusmegaterium isolated from the rhizosphere of wild plants grown on saline-alkaline lands vol.18, pp.11, 2016, https://doi.org/10.1080/15226514.2016.1183583
  38. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review vol.2, pp.1, 2010, https://doi.org/10.1080/23311932.2015.1127500
  39. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes vol.2016, pp.None, 2010, https://doi.org/10.1155/2016/6284547
  40. Salicornia strobilacea (Synonym of Halocnemum strobilaceum ) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth vol.7, pp.None, 2016, https://doi.org/10.3389/fmicb.2016.01286
  41. Halotolerant Rhizobacteria Promote Growth and Enhance Salinity Tolerance in Peanut vol.7, pp.None, 2010, https://doi.org/10.3389/fmicb.2016.01600
  42. Suppressing activity of staurosporine from Streptomyces sp. MJM4426 against rice bacterial blight disease vol.120, pp.4, 2010, https://doi.org/10.1111/jam.13034
  43. Halotolerant Plant Growth Promoting Bacteria Mediated Salinity Stress Amelioration in Plants vol.49, pp.4, 2010, https://doi.org/10.7745/kjssf.2016.49.4.355
  44. Spore associated bacteria of arbuscular mycorrhizal fungi improve maize tolerance to salinity by reducing ethylene stress level vol.81, pp.1, 2010, https://doi.org/10.1007/s10725-016-0184-9
  45. Intercropping in Sugarcane Cultivation Influenced the Soil Properties and Enhanced the Diversity of Vital Diazotrophic Bacteria vol.19, pp.2, 2017, https://doi.org/10.1007/s12355-016-0445-y
  46. Microflora of phytopathogen-transferring Bradysia agrestis: a step toward finding ideal candidates for paratransgenesis vol.71, pp.1, 2010, https://doi.org/10.1007/s13199-016-0412-0
  47. Halophilic rhizobacteria from Distichlis spicata promote growth and improve salt tolerance in heterologous plant hosts vol.73, pp.3, 2017, https://doi.org/10.1007/s13199-017-0481-8
  48. Development of a novel compound microbial agent for degradation of kitchen waste vol.48, pp.3, 2010, https://doi.org/10.1016/j.bjm.2016.12.011
  49. CaCO3 and MgCO3 Dissolving Halophilic Bacteria vol.34, pp.9, 2010, https://doi.org/10.1080/01490451.2016.1273410
  50. Effects of Soil Pre-Treatment with Basamid® Granules, Brassica juncea, Raphanus sativus , and Tagetes patula on Bacterial and Fungal Communities at Two Apple Replant Disease Sites vol.8, pp.None, 2010, https://doi.org/10.3389/fmicb.2017.01604
  51. Beneficial Soil Bacterium Pseudomonas frederiksbergensis OS261 Augments Salt Tolerance and Promotes Red Pepper Plant Growth vol.8, pp.None, 2010, https://doi.org/10.3389/fpls.2017.00705
  52. Isolation and Identification of Bacterial Endophytes from Grasses along the Oregon Coast vol.8, pp.3, 2017, https://doi.org/10.4236/ajps.2017.83040
  53. Characterization and Identification of Phosphate Solubilizing Bacteria Isolate GPC3.7 from Limestone Mining Region vol.58, pp.None, 2010, https://doi.org/10.1088/1755-1315/58/1/012016
  54. Sodium-resistant plant growth-promoting rhizobacteria isolated from a halophyte, Salsola grandis, in saline-alkaline soils of Turkey vol.6, pp.3, 2017, https://doi.org/10.18393/ejss.289460
  55. Cutaneous Microflora from Geographically Isolated Groups of Bradysia agrestis, an Insect Vector of Diverse Plant Pathogens vol.45, pp.3, 2017, https://doi.org/10.5941/myco.2017.45.3.160
  56. The potential contribution of siderophore producing bacteria on growth and Fe ion concentration of sunflower (Helianthus annuusL.) under water stress vol.41, pp.5, 2010, https://doi.org/10.1080/01904167.2017.1406112
  57. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops vol.9, pp.None, 2010, https://doi.org/10.3389/fmicb.2018.00148
  58. Living at the Frontiers of Life: Extremophiles in Chile and Their Potential for Bioremediation vol.9, pp.None, 2010, https://doi.org/10.3389/fmicb.2018.02309
  59. Rhizobacterial communities of five co-occurring desert halophytes vol.6, pp.None, 2010, https://doi.org/10.7717/peerj.5508
  60. Exiguobacterium: an overview of a versatile genus with potential in industry and agriculture vol.38, pp.1, 2018, https://doi.org/10.1080/07388551.2017.1312273
  61. Draft Genome Sequence of Zhihengliuella sp. Strain ISTPL4, a Psychrotolerant and Halotolerant Bacterium Isolated from Pangong Lake, India vol.6, pp.5, 2010, https://doi.org/10.1128/genomea.01533-17
  62. Halophytes in biosaline agriculture: Mechanism, utilization, and value addition vol.29, pp.4, 2018, https://doi.org/10.1002/ldr.2819
  63. Rhizobacteria fromCrocus sativusgrown in Kashmir, India vol.1200, pp.None, 2010, https://doi.org/10.17660/actahortic.2018.1200.11
  64. Bacteria endemic to saline coastal belt and their ability to mitigate the effects of salt stress on rice growth and yields vol.68, pp.9, 2010, https://doi.org/10.1007/s13213-018-1358-7
  65. Potential Anticoagulant Activity of Trypsin Inhibitor Purified from an Isolated Marine Bacterium Oceanimonas Sp. BPMS22 and its Kinetics vol.20, pp.6, 2018, https://doi.org/10.1007/s10126-018-9848-y
  66. Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress vol.9, pp.None, 2010, https://doi.org/10.1038/s41598-019-42374-9
  67. Halo-tolerant rhizospheric Arthrobacter woluwensis AK1 mitigates salt stress and induces physio-hormonal changes and expression of GmST1 and GmLAX3 in soybean vol.77, pp.1, 2010, https://doi.org/10.1007/s13199-018-0562-3
  68. Plant Host-Associated Mechanisms for Microbial Selection vol.10, pp.None, 2010, https://doi.org/10.3389/fpls.2019.00862
  69. Halomonas Rhizobacteria of Avicennia marina of Indian Sundarbans Promote Rice Growth Under Saline and Heavy Metal Stresses Through Exopolysaccharide Production vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.01207
  70. Isolation and characterization of halotolerant bacilli from chickpea (Cicer arietinum L.) rhizosphere for plant growth promotion and biocontrol traits vol.153, pp.3, 2010, https://doi.org/10.1007/s10658-018-1592-7
  71. Bio-herbicidal effect of 5-aminoleveulinic acid producing rhizobacteria in suppression of Lathyrus aphaca weed growth vol.64, pp.2, 2010, https://doi.org/10.1007/s10526-019-09925-5
  72. Rhizospheric and endospheric diazotrophs mediated soil fertility intensification in sugarcane-legume intercropping systems vol.19, pp.4, 2010, https://doi.org/10.1007/s11368-018-2156-3
  73. Improved germination efficiency of Salicornia ramosissima seeds inoculated with Bacillus aryabhattai SP1016‐20 vol.174, pp.3, 2010, https://doi.org/10.1111/aab.12495
  74. Genetic variations in salt tolerant and plant growth promoting rhizobacteria of the Western Himalayas vol.28, pp.2, 2019, https://doi.org/10.1007/s13562-019-00489-0
  75. An overview on improvement of crop productivity in saline soils by halotolerant and halophilic PGPRs vol.9, pp.7, 2010, https://doi.org/10.1007/s13205-019-1799-0
  76. Indiicoccus explosivorum gen. nov., sp. nov., isolated from an explosives waste contaminated site vol.69, pp.8, 2010, https://doi.org/10.1099/ijsem.0.003541
  77. Plantibacter flavus, Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens Endophytes Provide Host-Specific Growth Promotion of Arabidopsis thaliana, Basil, Lettuce, and vol.85, pp.19, 2010, https://doi.org/10.1128/aem.00383-19
  78. Synergistic Effect of Biochar and Plant Growth Promoting Rhizobacteria on Alleviation of Water Deficit in Rice Plants under Salt-Affected Soil vol.9, pp.12, 2010, https://doi.org/10.3390/agronomy9120847
  79. Effects of Enterobacter cloacae HG-1 on the Nitrogen-Fixing Community Structure of Wheat Rhizosphere Soil and on Salt Tolerance vol.11, pp.None, 2010, https://doi.org/10.3389/fpls.2020.01094
  80. When Salt Meddles Between Plant, Soil, and Microorganisms vol.11, pp.None, 2010, https://doi.org/10.3389/fpls.2020.553087
  81. Isolation and characterization of halotolerant phosphate solubilizing bacteria naturally colonizing the peanut rhizosphere in salt-affected soil vol.37, pp.2, 2010, https://doi.org/10.1080/01490451.2019.1666195
  82. Consortium of plant growth‐promoting bacteria improves spinach (Spinacea oleracea L.) growth under heavy metal stress conditions vol.95, pp.4, 2020, https://doi.org/10.1002/jctb.6077
  83. Isolation, Screening and Identification of Free-Living Diazotrophic Bacteria from Salinated Arid Soils vol.89, pp.3, 2010, https://doi.org/10.1134/s0026261720030030
  84. Biological control potential of rhizosphere bacteria with ACC-deaminase activity against Fusarium culmorum in wheat vol.107, pp.2, 2010, https://doi.org/10.13080/z-a.2020.107.014
  85. Salt Stress Mitigating Potential of Halotolerant/Halophilic Plant Growth Promoting vol.37, pp.7, 2010, https://doi.org/10.1080/01490451.2020.1761911
  86. Seasonal Variation Influence Endophytic Actinobacterial Communities of Medicinal Plants from Tropical Deciduous Forest of Meghalaya and Characterization of Their Plant Growth-Promoting Potentials vol.77, pp.8, 2010, https://doi.org/10.1007/s00284-020-01988-3
  87. Degradation and detoxification of phenanthrene by actinobacterium Zhihengliuella sp. ISTPL4 vol.27, pp.22, 2010, https://doi.org/10.1007/s11356-019-05478-3
  88. An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness vol.103, pp.3, 2010, https://doi.org/10.1111/tpj.14781
  89. Assessment of the Capacity of Beneficial Bacterial Inoculants to Enhance Canola (Brassica napus L.) Growth under Low Water Activity vol.10, pp.9, 2020, https://doi.org/10.3390/agronomy10091449
  90. Streptomyces sp. CLV45 from Fabaceae rhizosphere benefits growth of soybean plants vol.51, pp.4, 2010, https://doi.org/10.1007/s42770-020-00301-5
  91. Isolation and functional characterization of a mVOC producing plant-growth-promoting bacterium isolated from the date palm rhizosphere vol.16, pp.None, 2010, https://doi.org/10.1016/j.rhisph.2020.100267
  92. Current scenario and future prospects of plant growth-promoting rhizobacteria: an economic valuable resource for the agriculture revival under stressful conditions vol.43, pp.20, 2010, https://doi.org/10.1080/01904167.2020.1799004
  93. Land Management Legacy Affects Abundance and Function of the acdS Gene in Wheat Root Associated Pseudomonads vol.12, pp.None, 2010, https://doi.org/10.3389/fmicb.2021.611339
  94. Effect ofBacillus velezensis JC-K3 on Endophytic Bacterial and Fungal Diversity in Wheat Under Salt Stress vol.12, pp.None, 2010, https://doi.org/10.3389/fmicb.2021.802054
  95. Isolation of halo-tolerant bacteria with plant growth-promoting traits vol.709, pp.1, 2010, https://doi.org/10.1088/1755-1315/709/1/012078
  96. Halotolerant Endophytic Bacterium Serratia rubidaea ED1 Enhances Phosphate Solubilization and Promotes Seed Germination vol.11, pp.3, 2021, https://doi.org/10.3390/agriculture11030224
  97. Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants vol.249, pp.None, 2010, https://doi.org/10.1016/j.micres.2021.126771
  98. Inoculation of ACC Deaminase-Producing Brevibacterium linens RS16 Enhances Tolerance against Combined UV-B Radiation and Heat Stresses in Rice (Oryza sativa L.) vol.13, pp.18, 2010, https://doi.org/10.3390/su131810013
  99. Phomopsis liquidambaris reduces ethylene biosynthesis in rice under salt stress via inhibiting the activity of 1-aminocyclopropane-1-carboxylate deaminase vol.203, pp.10, 2010, https://doi.org/10.1007/s00203-021-02588-w
  100. PGPB Improve Photosynthetic Activity and Tolerance to Oxidative Stress in Brassica napus Grown on Salinized Soils vol.11, pp.23, 2010, https://doi.org/10.3390/app112311442
  101. Control Efficacy of Bacillus velezensis AFB2-2 against Potato Late Blight Caused by Phytophthora infestans in Organic Potato Cultivation vol.37, pp.6, 2010, https://doi.org/10.5423/ppj.ft.09.2021.0138
  102. Characterization of plant growth-promoting bacteria isolated from the rhizosphere of Robinia pseudoacacia growing in metal-contaminated mine tailings in eastern Morocco vol.304, pp.None, 2010, https://doi.org/10.1016/j.jenvman.2021.114321
  103. Ultraviolet B radiation-mediated stress ethylene emission from rice plants is regulated by 1-aminocyclopropane-1-carboxylate deaminase-producing bacteria vol.32, pp.2, 2022, https://doi.org/10.1016/s1002-0160(21)60045-0