References
- Abrol, I. P., J. S. P. Yadav, and F. I. Massoud. 1988. Salt Affected Soils and Their Management, p. 39. Food and Agriculture Organization (FAO), UN, Soils Bulletin, Rome.
- Anandham, R., R. Sridar, P. Nalayini, S. Poonguzhali, M. Madhaiyan, and T. M. Sa. 2007. Potential for plant growth promotion in groundnut (Arachis hypogaea L.) cv. ALR-2 by co-inoculation of sulfur-oxidizing bacteria and Rhizobium. Microbiol. Res. 162: 139-153 https://doi.org/10.1016/j.micres.2006.02.005
- Basha, S. and K. Ulaganathan. 2002. Antagonism of Bacillus species (strains 121) towards Curvularia lunata. Curr. Sci. 82: 1457-1463.
- Bayliss, C., E. Bent, D. E. Culham, S. MacLellan, A. J. Clarke, G. L. Brown, and J. M. Wood. 1997. Bacterial genetic loci implicated in the Pseudomonas putida GR12-2R3-canola mutualism: Identification of an exudate-inducible sugar transporter. Can. J. Microbiol. 43: 809-818. https://doi.org/10.1139/m97-118
- Belimov, A. A., V. I. Safronova, T. A. Sergeyeva, T. N. Egorova, V. A. Matveyeva, V. E. Tsyganov, et al. 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 47: 642-652. https://doi.org/10.1139/w01-062
- Brick, J. M., R. M. Bostock, and S. E. Silverstone. 1991. Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Appl. Environ. Microbiol. 57: 535-538.
- Brisou, J., D. Courtois, and F. Denis. 1974. Microbiological study of a hypersaline lake in French Somaliland. Appl. Microbiol. 27: 819-822.
- Cheng, Z., E. Park, and B. R. Glick. 2007. 1-Aminocyclopropane- 1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can. J. Microbiol. 53: 912-918. https://doi.org/10.1139/W07-050
- DasGupta, S. M., N. Khan, and C. S. Nautiyal. 2006. Biologic control ability of plant growth-promoting Paenibacillus lentimorbus NRRL B-30488 isolated from milk. Curr. Microbiol. 53: 502-505. https://doi.org/10.1007/s00284-006-0261-9
- Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
- Gerhardt, P., R. G. E. Murray, W. A. Wood, and N. R. Krieg. 1994. In: Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC.
- Giongo, A., A. Ambrosini, L. K. Vargas, J. R. J. Freire, M. H. Bodanese-Zanettini, and L. M. P. Passaglia. 2008. Evaluation of genetic diversity of Bradyrhizobia strains nodulating soybean [Glycine max (L.) Merrill] isolated from South Brazilian fields. Appl. Soil Ecol. 38: 261-269. https://doi.org/10.1016/j.apsoil.2007.10.016
- Glick, B. R., Z. Cheng, J. Czarny, and J. Duan. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. 119: 329-339 https://doi.org/10.1007/s10658-007-9162-4
- Glick, B. R. 2004. Bacterial ACC deaminase and the alleviation of plant stress. Adv. Appl. Microbiol. 56: 291-312. https://doi.org/10.1016/S0065-2164(04)56009-4
- Glick, B. R., D. M. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J. Theor. Biol. 190: 63-68. https://doi.org/10.1006/jtbi.1997.0532
- Glick, B. R. 1995. The enhancement of plant growth by freeliving bacteria. Can. J. Microbiol. 41: 109-117. https://doi.org/10.1139/m95-015
- Grichko, V. P. and B. R. Glick. 2001. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol. Biochem. 39: 11-17. https://doi.org/10.1016/S0981-9428(00)01212-2
- Gothwal, R. K., V. K. Nigam, M. K. Mohan, D. Sasmal, and P. Ghosh. 2007. Screening of nitrogen fixers from rhizospheric bacterial strains associated with important desert plants. Appl. Ecol. Environ. Res. 6: 101-109. https://doi.org/10.1016/S1569-3740(06)06006-8
- Hariprasad, P. and S. R. Niranjana. 2009. Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil 316: 13-24. https://doi.org/10.1007/s11104-008-9754-6
- Indiragandhi, P., R. Anandham, K. Kim, W. Yim, M. Madhaiyan, and T. M. Sa. 2008. Induction of defense responses in tomato against Pseudomonas syringae pv. tomato by regulating the stress ethylene level with Methylobacterium oryzae CBMB20 containing 1-aminocyclopropane-1-carboxylate deaminase. World J. Microbiol. Biotechnol. 24: 1037-1045. https://doi.org/10.1007/s11274-007-9572-7
- Indiragandhi, P., R. Anandham, M. Madhaiyan, and T. M. Sa. 2007. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamond back moth Plutella xylostella (Lepidoptera: Plutellidae). Curr. Microbiol. 56: 327-333.
- Iqbal, U., N. Jamil, I. Ali, and S. Hasnain. 2010. Effect of zincphosphate- solubilizing bacterial strains on growth of Vigna radiata. Ann. Microbiol. 61: 1869-2044.
- Kang, S. M., G. J. Joo, M. Hamayun, C. I. Na, D. H. Shin, H. Y. Kim, J. K. Hong, and I. J. Lee. 2009. Gibberellin production and phosphate solubilization by newly isolated strains of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol. Lett. 31: 277-281. https://doi.org/10.1007/s10529-008-9867-2
- Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
- Krause, M. S., T. J. J. De-Ceuster, S. M. Tiquia, F. C. Jr. Michel, L. V. Madden, and H. A. J. Hoitink. 2003. Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish. Phytopathology 93: 1292-1300. https://doi.org/10.1094/PHYTO.2003.93.10.1292
- Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5: 150-163. https://doi.org/10.1093/bib/5.2.150
- Larsen, H. 1986. Halophilic and halotolerant microorganisms - an overview and historical perspective. FEMS Microbiol. Rev. 39: 3-7. https://doi.org/10.1111/j.1574-6968.1986.tb01835.x
- Li, J., D. H. Ovakim, T. C. Charles, and B. R. Glick. 2000. An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr. Microbiol. 41: 101-105. https://doi.org/10.1007/s002840010101
- Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with Folin-phenol reagent. J. Biol. Chem. 193: 265-275.
- Lynch, J. M. and J. M. Whipps. 1991. Substrate flow in the rhizosphere, pp. 15-24. In D. L. Keister and B. Cregan (eds.). The Rhizosphere and Plant Growth. Kluwer, Dordrecht.
- Madhaiyan, M., S. Poonguzhali, J. Ryu, and T. M. Sa. 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224: 268-278. https://doi.org/10.1007/s00425-005-0211-y
- Mayak, S., T. Tirosh, and B. R. Glick. 2004. Plant growthpromoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem. 42: 565-572. https://doi.org/10.1016/j.plaphy.2004.05.009
- Patten, C. L. and B. R. Glick. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68: 3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
- Penrose, D. M. and B. R. Glick. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growthpromoting rhizobacteria. Physiol. Plant 118: 10-15. https://doi.org/10.1034/j.1399-3054.2003.00086.x
- Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17: 362-370.
- Reed, M. L. E. and B. R. Glick. 2005. Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can. J. Microbiol. 51: 1061-1069. https://doi.org/10.1139/w05-094
- Rohban, R., M. A. Amoozegar, and A. Ventosa. 2009. Screening and isolation of halotolerant bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J. Ind. Microbiol. Biotechnol. 36: 333-340. https://doi.org/10.1007/s10295-008-0500-0
- Sambrook, J., E. F. Fritsch, and T. Maniatis, (eds.). 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, New York, USA.
- Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
- Swain, M. R., R. C. Ray, and C. S. Nautiyal. 2008. Biocontrol efficacy of Bacillus subtilis strains isolated from cow dung against postharvest yam (Dioscorea rotundata L.) pathogens. Curr. Microbiol. 57: 407-411. https://doi.org/10.1007/s00284-008-9213-x
- Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Upadhyay, S. K., D. P. Singh, and R. Saikia. 2009. Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr. Microbiol. 59: 489-496. https://doi.org/10.1007/s00284-009-9464-1
- Wani, P. A., M. S. Khan, and A. Zaidi. 2007. Chromium reduction, plant growth-promoting potentials, and metal solubilization by Bacillus sp. isolated from alluvial soil. Curr. Microbiol. 54: 237-243. https://doi.org/10.1007/s00284-006-0451-5
- Waino, M., B. J. Tindall, P. Schumann, and K. Ingvorsen. 1999. Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int. J. Syst. Bacteriol. 49: 821-831. https://doi.org/10.1099/00207713-49-2-821
- Zahir, A. Z., U. Ghani, M. Naveed, S. M. Nadeem, and H. N. Asghar. 2009. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch. Microbiol. 191: 415-424. https://doi.org/10.1007/s00203-009-0466-y
- Zhu, J. K. 2001. Plant salt tolerance. Trends Plant Sci. 6: 66-71. https://doi.org/10.1016/S1360-1385(00)01838-0
Cited by
- Biotechnological uses of desiccation-tolerant microorganisms for the rhizoremediation of soils subjected to seasonal drought vol.91, pp.5, 2010, https://doi.org/10.1007/s00253-011-3461-6
- Isolation and performance evaluation of halotolerant phosphate solubilizing bacteria from the rhizospheric soils of historic Dagong Brine Well in China vol.27, pp.11, 2010, https://doi.org/10.1007/s11274-011-0736-0
- Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth vol.47, pp.8, 2010, https://doi.org/10.1007/s00374-011-0598-5
- ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems vol.56, pp.2, 2010, https://doi.org/10.1007/s13199-012-0162-6
- Characterization of microflora in Latin-style cheeses by next-generation sequencing technology vol.12, pp.None, 2010, https://doi.org/10.1186/1471-2180-12-254
- A Drought Resistance-Promoting Microbiome Is Selected by Root System under Desert Farming vol.7, pp.10, 2010, https://doi.org/10.1371/journal.pone.0048479
- Plant Growth-Promoting Bacteria: Mechanisms and Applications vol.2012, pp.None, 2010, https://doi.org/10.6064/2012/963401
- Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress vol.43, pp.3, 2010, https://doi.org/10.1590/s1517-838220120003000046
- Spore Associated Bacteria (SAB) of Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth Promoting Rhizobacteria (PGPR) Increase Nutrient Uptake and Plant Growth Under Stress Conditions vol.45, pp.4, 2012, https://doi.org/10.7745/kjssf.2012.45.4.582
- Expression of an exogenous 1‐aminocyclopropane‐1‐carboxylate deaminase gene in Mesorhizobium spp. reduces the negative effects of salt stress in chickpea vol.349, pp.1, 2010, https://doi.org/10.1111/1574-6968.12294
- The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms vol.37, pp.5, 2010, https://doi.org/10.1111/1574-6976.12028
- Plant growth in Arabidopsis is assisted by compost soil-derived microbial communities vol.4, pp.None, 2010, https://doi.org/10.3389/fpls.2013.00235
- Potential for Plant Growth Promotion of Rhizobacteria Associated with Salicornia Growing in Tunisian Hypersaline Soils vol.2013, pp.None, 2010, https://doi.org/10.1155/2013/248078
- Plant Growth Promotion Potential Is Equally Represented in Diverse Grapevine Root-Associated Bacterial Communities from Different Biopedoclimatic Environments vol.2013, pp.None, 2010, https://doi.org/10.1155/2013/491091
- Effects of actinobacteria on plant disease suppression and growth promotion vol.97, pp.22, 2010, https://doi.org/10.1007/s00253-013-5206-1
- Plant growth promoting bacteria from Crocus sativus rhizosphere vol.29, pp.12, 2010, https://doi.org/10.1007/s11274-013-1393-2
- Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review vol.34, pp.4, 2010, https://doi.org/10.1007/s13593-014-0233-6
- Bacteria with ACC deaminase can promote plant growth and help to feed the world vol.169, pp.1, 2010, https://doi.org/10.1016/j.micres.2013.09.009
- Effect of co-inoculation of Brevibacterium iodinum RS16 and Methylobacterium oryzae CBMB20 on the early growth of crop plants in Saemangeum reclaimed soil vol.47, pp.1, 2014, https://doi.org/10.7745/kjssf.2014.47.1.001
- New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance vol.9, pp.6, 2010, https://doi.org/10.1371/journal.pone.0099168
- ACC Deaminase Producing Arsenic Tolerant Bacterial Effect on Mitigation of Stress Ethylene Emission in Maize Grown in an Arsenic Polluted Soil vol.47, pp.3, 2010, https://doi.org/10.7745/kjssf.2014.47.3.213
- Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea vol.21, pp.15, 2010, https://doi.org/10.1007/s11356-014-2852-5
- Revegetation of barren lakeside land through growth enhancement of Xanthium italicum by rhizobacteria vol.12, pp.suppl1, 2014, https://doi.org/10.1007/s10333-014-0428-0
- Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’ tomato plants vol.117, pp.3, 2010, https://doi.org/10.1111/jam.12563
- Effect of soil salinity and nutrient levels on the community structure of the root-associated bacteria of the facultative halophyte, Tamarix ramosissima, in southwestern United States vol.61, pp.5, 2010, https://doi.org/10.2323/jgam.61.193
- The Date Palm Tree Rhizosphere Is a Niche for Plant Growth Promoting Bacteria in the Oasis Ecosystem vol.2015, pp.None, 2010, https://doi.org/10.1155/2015/153851
- 순천만 칠면초의 근권으로부터 분리된 해양세균의 다양성 및 계통학적 분석 vol.25, pp.2, 2010, https://doi.org/10.5352/jls.2015.25.2.189
- 독도 해안식물로부터 분리된 호염성 세균들의 특성 및 계통학적 분석 vol.51, pp.1, 2010, https://doi.org/10.7845/kjm.2015.5008
- 순천만에 자생하는 염생식물 근권에서 유래한 해양세균의 계통학적 분석 및 다양성 vol.43, pp.1, 2010, https://doi.org/10.4014/mbl.1501.01004
- Isolation of heterotrophic thiosulfate-oxidizing bacteria and their role in a conserved tidal flat in the Ariake Sea, Japan vol.7, pp.4, 2010, https://doi.org/10.5897/jene2015.0504
- Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance vol.107, pp.6, 2015, https://doi.org/10.1007/s10482-015-0445-z
- Halotolerant PGPRs Prevent Major Shifts in Indigenous Microbial Community Structure Under Salinity Stress vol.70, pp.1, 2010, https://doi.org/10.1007/s00248-014-0557-4
- Potential of endophytes from medicinal plants for biocontrol and plant growth promotion vol.82, pp.3, 2016, https://doi.org/10.1007/s10327-016-0648-9
- Changes in volatiles in carrots inoculated with ACC deaminase-producing bacteria isolated from organic crops vol.407, pp.1, 2010, https://doi.org/10.1007/s11104-015-2769-x
- Biodegradation of fluoranthene by a newly isolated strain of Bacillus stratosphericus from Mediterranean seawater of the Sfax fishing harbour, Tunisia vol.23, pp.15, 2010, https://doi.org/10.1007/s11356-016-6648-7
- Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat ( Triticum aestivum ) vol.47, pp.3, 2010, https://doi.org/10.1016/j.bjm.2016.04.001
- Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillusmegaterium isolated from the rhizosphere of wild plants grown on saline-alkaline lands vol.18, pp.11, 2016, https://doi.org/10.1080/15226514.2016.1183583
- Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review vol.2, pp.1, 2010, https://doi.org/10.1080/23311932.2015.1127500
- Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes vol.2016, pp.None, 2010, https://doi.org/10.1155/2016/6284547
- Salicornia strobilacea (Synonym of Halocnemum strobilaceum ) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth vol.7, pp.None, 2016, https://doi.org/10.3389/fmicb.2016.01286
- Halotolerant Rhizobacteria Promote Growth and Enhance Salinity Tolerance in Peanut vol.7, pp.None, 2010, https://doi.org/10.3389/fmicb.2016.01600
- Suppressing activity of staurosporine from Streptomyces sp. MJM4426 against rice bacterial blight disease vol.120, pp.4, 2010, https://doi.org/10.1111/jam.13034
- Halotolerant Plant Growth Promoting Bacteria Mediated Salinity Stress Amelioration in Plants vol.49, pp.4, 2010, https://doi.org/10.7745/kjssf.2016.49.4.355
- Spore associated bacteria of arbuscular mycorrhizal fungi improve maize tolerance to salinity by reducing ethylene stress level vol.81, pp.1, 2010, https://doi.org/10.1007/s10725-016-0184-9
- Intercropping in Sugarcane Cultivation Influenced the Soil Properties and Enhanced the Diversity of Vital Diazotrophic Bacteria vol.19, pp.2, 2017, https://doi.org/10.1007/s12355-016-0445-y
- Microflora of phytopathogen-transferring Bradysia agrestis: a step toward finding ideal candidates for paratransgenesis vol.71, pp.1, 2010, https://doi.org/10.1007/s13199-016-0412-0
- Halophilic rhizobacteria from Distichlis spicata promote growth and improve salt tolerance in heterologous plant hosts vol.73, pp.3, 2017, https://doi.org/10.1007/s13199-017-0481-8
- Development of a novel compound microbial agent for degradation of kitchen waste vol.48, pp.3, 2010, https://doi.org/10.1016/j.bjm.2016.12.011
- CaCO3 and MgCO3 Dissolving Halophilic Bacteria vol.34, pp.9, 2010, https://doi.org/10.1080/01490451.2016.1273410
- Effects of Soil Pre-Treatment with Basamid® Granules, Brassica juncea, Raphanus sativus , and Tagetes patula on Bacterial and Fungal Communities at Two Apple Replant Disease Sites vol.8, pp.None, 2010, https://doi.org/10.3389/fmicb.2017.01604
- Beneficial Soil Bacterium Pseudomonas frederiksbergensis OS261 Augments Salt Tolerance and Promotes Red Pepper Plant Growth vol.8, pp.None, 2010, https://doi.org/10.3389/fpls.2017.00705
- Isolation and Identification of Bacterial Endophytes from Grasses along the Oregon Coast vol.8, pp.3, 2017, https://doi.org/10.4236/ajps.2017.83040
- Characterization and Identification of Phosphate Solubilizing Bacteria Isolate GPC3.7 from Limestone Mining Region vol.58, pp.None, 2010, https://doi.org/10.1088/1755-1315/58/1/012016
- Sodium-resistant plant growth-promoting rhizobacteria isolated from a halophyte, Salsola grandis, in saline-alkaline soils of Turkey vol.6, pp.3, 2017, https://doi.org/10.18393/ejss.289460
- Cutaneous Microflora from Geographically Isolated Groups of Bradysia agrestis, an Insect Vector of Diverse Plant Pathogens vol.45, pp.3, 2017, https://doi.org/10.5941/myco.2017.45.3.160
- The potential contribution of siderophore producing bacteria on growth and Fe ion concentration of sunflower (Helianthus annuusL.) under water stress vol.41, pp.5, 2010, https://doi.org/10.1080/01904167.2017.1406112
- Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops vol.9, pp.None, 2010, https://doi.org/10.3389/fmicb.2018.00148
- Living at the Frontiers of Life: Extremophiles in Chile and Their Potential for Bioremediation vol.9, pp.None, 2010, https://doi.org/10.3389/fmicb.2018.02309
- Rhizobacterial communities of five co-occurring desert halophytes vol.6, pp.None, 2010, https://doi.org/10.7717/peerj.5508
- Exiguobacterium: an overview of a versatile genus with potential in industry and agriculture vol.38, pp.1, 2018, https://doi.org/10.1080/07388551.2017.1312273
- Draft Genome Sequence of Zhihengliuella sp. Strain ISTPL4, a Psychrotolerant and Halotolerant Bacterium Isolated from Pangong Lake, India vol.6, pp.5, 2010, https://doi.org/10.1128/genomea.01533-17
- Halophytes in biosaline agriculture: Mechanism, utilization, and value addition vol.29, pp.4, 2018, https://doi.org/10.1002/ldr.2819
- Rhizobacteria fromCrocus sativusgrown in Kashmir, India vol.1200, pp.None, 2010, https://doi.org/10.17660/actahortic.2018.1200.11
- Bacteria endemic to saline coastal belt and their ability to mitigate the effects of salt stress on rice growth and yields vol.68, pp.9, 2010, https://doi.org/10.1007/s13213-018-1358-7
- Potential Anticoagulant Activity of Trypsin Inhibitor Purified from an Isolated Marine Bacterium Oceanimonas Sp. BPMS22 and its Kinetics vol.20, pp.6, 2018, https://doi.org/10.1007/s10126-018-9848-y
- Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress vol.9, pp.None, 2010, https://doi.org/10.1038/s41598-019-42374-9
- Halo-tolerant rhizospheric Arthrobacter woluwensis AK1 mitigates salt stress and induces physio-hormonal changes and expression of GmST1 and GmLAX3 in soybean vol.77, pp.1, 2010, https://doi.org/10.1007/s13199-018-0562-3
- Plant Host-Associated Mechanisms for Microbial Selection vol.10, pp.None, 2010, https://doi.org/10.3389/fpls.2019.00862
- Halomonas Rhizobacteria of Avicennia marina of Indian Sundarbans Promote Rice Growth Under Saline and Heavy Metal Stresses Through Exopolysaccharide Production vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.01207
- Isolation and characterization of halotolerant bacilli from chickpea (Cicer arietinum L.) rhizosphere for plant growth promotion and biocontrol traits vol.153, pp.3, 2010, https://doi.org/10.1007/s10658-018-1592-7
- Bio-herbicidal effect of 5-aminoleveulinic acid producing rhizobacteria in suppression of Lathyrus aphaca weed growth vol.64, pp.2, 2010, https://doi.org/10.1007/s10526-019-09925-5
- Rhizospheric and endospheric diazotrophs mediated soil fertility intensification in sugarcane-legume intercropping systems vol.19, pp.4, 2010, https://doi.org/10.1007/s11368-018-2156-3
- Improved germination efficiency of Salicornia ramosissima seeds inoculated with Bacillus aryabhattai SP1016‐20 vol.174, pp.3, 2010, https://doi.org/10.1111/aab.12495
- Genetic variations in salt tolerant and plant growth promoting rhizobacteria of the Western Himalayas vol.28, pp.2, 2019, https://doi.org/10.1007/s13562-019-00489-0
- An overview on improvement of crop productivity in saline soils by halotolerant and halophilic PGPRs vol.9, pp.7, 2010, https://doi.org/10.1007/s13205-019-1799-0
- Indiicoccus explosivorum gen. nov., sp. nov., isolated from an explosives waste contaminated site vol.69, pp.8, 2010, https://doi.org/10.1099/ijsem.0.003541
- Plantibacter flavus, Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens Endophytes Provide Host-Specific Growth Promotion of Arabidopsis thaliana, Basil, Lettuce, and vol.85, pp.19, 2010, https://doi.org/10.1128/aem.00383-19
- Synergistic Effect of Biochar and Plant Growth Promoting Rhizobacteria on Alleviation of Water Deficit in Rice Plants under Salt-Affected Soil vol.9, pp.12, 2010, https://doi.org/10.3390/agronomy9120847
- Effects of Enterobacter cloacae HG-1 on the Nitrogen-Fixing Community Structure of Wheat Rhizosphere Soil and on Salt Tolerance vol.11, pp.None, 2010, https://doi.org/10.3389/fpls.2020.01094
- When Salt Meddles Between Plant, Soil, and Microorganisms vol.11, pp.None, 2010, https://doi.org/10.3389/fpls.2020.553087
- Isolation and characterization of halotolerant phosphate solubilizing bacteria naturally colonizing the peanut rhizosphere in salt-affected soil vol.37, pp.2, 2010, https://doi.org/10.1080/01490451.2019.1666195
- Consortium of plant growth‐promoting bacteria improves spinach (Spinacea oleracea L.) growth under heavy metal stress conditions vol.95, pp.4, 2020, https://doi.org/10.1002/jctb.6077
- Isolation, Screening and Identification of Free-Living Diazotrophic Bacteria from Salinated Arid Soils vol.89, pp.3, 2010, https://doi.org/10.1134/s0026261720030030
- Biological control potential of rhizosphere bacteria with ACC-deaminase activity against Fusarium culmorum in wheat vol.107, pp.2, 2010, https://doi.org/10.13080/z-a.2020.107.014
- Salt Stress Mitigating Potential of Halotolerant/Halophilic Plant Growth Promoting vol.37, pp.7, 2010, https://doi.org/10.1080/01490451.2020.1761911
- Seasonal Variation Influence Endophytic Actinobacterial Communities of Medicinal Plants from Tropical Deciduous Forest of Meghalaya and Characterization of Their Plant Growth-Promoting Potentials vol.77, pp.8, 2010, https://doi.org/10.1007/s00284-020-01988-3
- Degradation and detoxification of phenanthrene by actinobacterium Zhihengliuella sp. ISTPL4 vol.27, pp.22, 2010, https://doi.org/10.1007/s11356-019-05478-3
- An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness vol.103, pp.3, 2010, https://doi.org/10.1111/tpj.14781
- Assessment of the Capacity of Beneficial Bacterial Inoculants to Enhance Canola (Brassica napus L.) Growth under Low Water Activity vol.10, pp.9, 2020, https://doi.org/10.3390/agronomy10091449
- Streptomyces sp. CLV45 from Fabaceae rhizosphere benefits growth of soybean plants vol.51, pp.4, 2010, https://doi.org/10.1007/s42770-020-00301-5
- Isolation and functional characterization of a mVOC producing plant-growth-promoting bacterium isolated from the date palm rhizosphere vol.16, pp.None, 2010, https://doi.org/10.1016/j.rhisph.2020.100267
- Current scenario and future prospects of plant growth-promoting rhizobacteria: an economic valuable resource for the agriculture revival under stressful conditions vol.43, pp.20, 2010, https://doi.org/10.1080/01904167.2020.1799004
- Land Management Legacy Affects Abundance and Function of the acdS Gene in Wheat Root Associated Pseudomonads vol.12, pp.None, 2010, https://doi.org/10.3389/fmicb.2021.611339
- Effect ofBacillus velezensis JC-K3 on Endophytic Bacterial and Fungal Diversity in Wheat Under Salt Stress vol.12, pp.None, 2010, https://doi.org/10.3389/fmicb.2021.802054
- Isolation of halo-tolerant bacteria with plant growth-promoting traits vol.709, pp.1, 2010, https://doi.org/10.1088/1755-1315/709/1/012078
- Halotolerant Endophytic Bacterium Serratia rubidaea ED1 Enhances Phosphate Solubilization and Promotes Seed Germination vol.11, pp.3, 2021, https://doi.org/10.3390/agriculture11030224
- Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants vol.249, pp.None, 2010, https://doi.org/10.1016/j.micres.2021.126771
- Inoculation of ACC Deaminase-Producing Brevibacterium linens RS16 Enhances Tolerance against Combined UV-B Radiation and Heat Stresses in Rice (Oryza sativa L.) vol.13, pp.18, 2010, https://doi.org/10.3390/su131810013
- Phomopsis liquidambaris reduces ethylene biosynthesis in rice under salt stress via inhibiting the activity of 1-aminocyclopropane-1-carboxylate deaminase vol.203, pp.10, 2010, https://doi.org/10.1007/s00203-021-02588-w
- PGPB Improve Photosynthetic Activity and Tolerance to Oxidative Stress in Brassica napus Grown on Salinized Soils vol.11, pp.23, 2010, https://doi.org/10.3390/app112311442
- Control Efficacy of Bacillus velezensis AFB2-2 against Potato Late Blight Caused by Phytophthora infestans in Organic Potato Cultivation vol.37, pp.6, 2010, https://doi.org/10.5423/ppj.ft.09.2021.0138
- Characterization of plant growth-promoting bacteria isolated from the rhizosphere of Robinia pseudoacacia growing in metal-contaminated mine tailings in eastern Morocco vol.304, pp.None, 2010, https://doi.org/10.1016/j.jenvman.2021.114321
- Ultraviolet B radiation-mediated stress ethylene emission from rice plants is regulated by 1-aminocyclopropane-1-carboxylate deaminase-producing bacteria vol.32, pp.2, 2022, https://doi.org/10.1016/s1002-0160(21)60045-0