DOI QR코드

DOI QR Code

PCR-DGGE as a Supplemental Method Verifying Dominance of Culturable Microorganisms from Activated Sludge

  • Zhou, Sheng (College of Environmental Science and Engineering South China University of Technology, The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education) ;
  • Wei, Chaohai (College of Environmental Science and Engineering South China University of Technology, The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education) ;
  • Ke, Lin (College of Environmental Science and Engineering South China University of Technology, The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education) ;
  • Wu, Haizhen (School of Bioscience and Bioengineering, South China University of Technology)
  • Received : 2009.08.13
  • Accepted : 2010.08.04
  • Published : 2010.11.28

Abstract

To verify the dominance of microorganisms in wastewater biological treatment, PCR-DGGE (denaturing gradient gel electrophoresis) was performed as a supplementary support method for screening of the dominant microorganisms from activated sludge. Results suggest that the dominant microorganisms in activated sludge are primarily responsible for strengthening its effectiveness as a biological treatment system, followed by the non-main dominant microorganisms, whereas the non-dominant microorganisms showed no effects. The degree of microbial abundance present on the profile of PCR-DGGE was in line with the treatment efficiency of augmented activated sludge with isolated cultures, suggesting that PCR-DGGE can be used as an effective supplementary method for verifying culturable dominant microorganisms in activated sludge of coking wastewater.

Keywords

References

  1. Ahn, Y., J. Sanseverino, and G. S. Sayler. 1999. Analyses of polycyclic aromatic hydrocarbon-degrading bacteria isolated from contaminated soils. Biodegradation 10: 149-157. https://doi.org/10.1023/A:1008369905161
  2. Farrelly, V., F. A. Rainey, and E. Stackebrandt. 1995. Effects of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl. Environ. Microbiol. 61: 2798-2801.
  3. Guieysse, B., P. Wikstrom, M. Forsman, and B. Mattiasson. 2001. Biomonitoring of continuous microbial community adaptation towards more efficient phenol-degradation in a fedbatch bioreactor. Appl. Microbiol. Biotechnol. 56: 780-787. https://doi.org/10.1007/s002530100676
  4. Joe, S. J., K. Suto, C. Inoie, and T. Chida. 2007. Isolation and characterization of acidophilic heterotrophic iron-oxidizing bacterium from enrichment culture obtained from acid mine drainage treatment plant. J. Biosci. Bioeng. 104: 117-123. https://doi.org/10.1263/jbb.104.117
  5. Korthals, M., M. J. Ege, C. C. Tebbe, E. Mutius, and J. Bauer. 2008. Application of PCR-SSCP for molecular epidemiological studies on the exposure of farm children to bacteria in environmental dust. J. Microbiol. Methods. 73: 49-56. https://doi.org/10.1016/j.mimet.2008.01.010
  6. Kaplan, C. W. and C. L. Kitts. 2004. Bacterial succession in a petroleum land treatment unit. Appl. Environ. Microbiol. 70: 1777-1786. https://doi.org/10.1128/AEM.70.3.1777-1786.2004
  7. Lovell, C. R., P. V. Decker, and C. E. Bagwell. 2008. Analysis of a diverse assemblage of diazotrophic bacteria from Spartina alterniflora using DGGE and clone library screening. J. Microbiol. Methods. 73: 160-171. https://doi.org/10.1016/j.mimet.2008.02.005
  8. Lurchachaiwong, W., S. Payungporn, U. Srisatidnarakul, C. Mungkundar, A. Theamboonlers, and Y. Poovorawan. 2008. Rapid detection and strain identification of porcine reproductive and respiratory syndrome virus (PRRSV) by real-time RT-PCR. Lett. Appl. Microbiol. 46: 55-60.
  9. Muyzer, G. D., E. C. Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
  10. Nilsson, T. and C. Bjordal. 2008. The use of kapok fibres for enrichment cultures of lignocellulose-degrading bacteria. Int. Biodeter. Biodegrad. 61: 11-16. https://doi.org/10.1016/j.ibiod.2007.06.009
  11. Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Weishuber, and R. L. Amann. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178: 5636-5643.
  12. Ros, M., M. Goberna, J. A. Pascual, S. Klammer, and H. Insam. 2008. 16S rDNA analysis reveals low microbial diversity in community level physiological profile assays. J. Microbiol. Methods 72: 221-226. https://doi.org/10.1016/j.mimet.2008.01.003
  13. Rasmussen, J. P., P. H. Barbez, L. A. Burgoyne, and C. P. Saint. 2008. Rapid preparation of cyanobacterial DNA for real-time PCR analysis. Lett. Appl. Microbiol. 46: 14-19.
  14. Ren, Y., C. H. Wei, C. F. Wu, and G. B. Li. 2007. Environmental and biological characteristics of coking wastewater. Acta Scientiae Circumstantiae 27: 1095-1100.
  15. State Environmental Protection Administration of China. 2000. Analytical Method of the Water and Waste Water, pp. 211-213. China Environmental Science Press, Beijing.
  16. Von, W. F., U. B. Gobel, and E. Stackebrandt. 1997. Determination of microbial diversity in environmental sample: Pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21: 213-229. https://doi.org/10.1111/j.1574-6976.1997.tb00351.x
  17. Whiteley, A. S. and M. J. 2000. Bacterial community structure and physiological state within an industrial phenol bioremediation system. Appl. Environ. Microbiol. 66: 2400-2407. https://doi.org/10.1128/AEM.66.6.2400-2407.2000
  18. Xia, X., J. Bollinger, and A. Ogram. 1995. Molecular genetic analysis of the response of three soil microbial communities to the application of 2,4-D. Mol. Ecol. 4: 17-28. https://doi.org/10.1111/j.1365-294X.1995.tb00188.x
  19. Xing, W., J. Zuo, and Y. Sun. 2006. Study on microbial community in methanogenic granular sludge by FISH and DGGE. Environ. Sc. 27: 2268-2272.
  20. Xing, D. F., Q. Nan, J. X. Song, and X. L. Xu. 2006. Community of activated sludge based on different targeted sequence of 16S rDNA by denaturing gradient gel electrophoresis. Environ. Sci. 27: 1424-1428.
  21. Xing, D. F., N. Q. Ren, and M. L. Gong. 2005. Application of PCR-DGGE to resolve microbial diversity in bio-hydrogen producing reactor. Environ. Sci. 26: 172-176.
  22. Yan, X., Z. M. Xu, X. X. Feng, Y. D. Liu, B. B. Liu, X. J. Zhang, C. G. Zhu, and L. P. Zhao. 2007. Cloning of environmental genomic fragments as physical markers for monitoring microbial populations in coking wastewater treatment system. Microb. Ecol. 53: 163-172. https://doi.org/10.1007/s00248-006-9157-2
  23. Youn, S. Y., J. M. Seo, and G. E. Ji. 2008. Evaluation of the PCR method for identification of Bifidobacterium species. Lett. Appl. Microbiol. 46: 7-13.
  24. Zhou, J., M. A. Bruns, and J. M. Tiedje. 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62: 316-322.

Cited by

  1. Comparison of Ammonia-Oxidizing Bacterial Community Structure in Membrane-Assisted Bioreactors Using PCR-DGGE and FISH vol.22, pp.8, 2010, https://doi.org/10.4014/jmb.1201.01014
  2. Analysis of Bacterial Communities in A2O Membrane Bioreactor Treating Oily Wastewater vol.641, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/amr.641-642.87
  3. Influence of Biological Treatment and Ultraviolet Disinfection System on Pseudomonas spp. Diversity in Wastewater as Assessed by Denaturing Gradient Gel Electrophoresis vol.42, pp.5, 2010, https://doi.org/10.1002/clen.201200589