DOI QR코드

DOI QR Code

Recombinant Production of an Inulinase in a Saccharomyces cerevisiae gal80 Strain

  • Received : 2010.07.06
  • Accepted : 2010.07.24
  • Published : 2010.11.28

Abstract

The inulinase gene (INU1) from Kluyveromyces marxianus NCYC2887 was overexpressed by using the GAL10 promotor in a ${\Delta}ga180$ strain of Saccharomyces cerevisiae. The inulinase gene lacking the original signal sequence was fused in-frame to a mating factor ${\alpha}$ signal sequence for secretory expression. Use of the ${\Delta}ga180$ strain allowed for the galactose-free induction of inulinase expression using a glucose-only medium. Shake-flask cultivation in YPD medium produced 34.6 U/ml of the recombinant inulinase, which was approximately 13-fold higher than that produced by K. marxianus NCYC2887. It was found that the use of the ${\Delta}ga180$ strain improved the expression of inulinase in the recombinant S. cerevisiae in both aerobic and anaerobic conditions by about 2.9- and 1.7-fold, respectively. A 5-l fed-batch fermentation using YPD medium was performed under aerobic condition with glucose feeding, which resulted in the inulinase production of 31.7 U/ml at the $OD_{600}$ of 67. Ethanol fermentation of dried powder of Jerusalem artichoke, an inulin-rich biomass, was also performed using the recombinant S. cerevisiae expressing INU1 and K. marxianus NCYC2887. Fermentation in a 5-l scale fermentor was carried out at an aeration rate of 0.2 vvm, an agitation rate of 300 rpm, and with the pH controlled at 5.0. The temperature was maintained at $30^{\circ}C$ and $37^{\circ}C$, respectively, for the recombinant S. cerevisiae and K. marxianus. The maximum productivities of ethanol were 59.0 and 53.5 g/l, respectively.

Keywords

References

  1. Chen, H. Q., X. M. Chen, Y. Li, J. Wang, Z. Y. Jina, X. M. Xua, Z. W. Zhao, T. X. Chen, and Z. J. Xie. 2009. Purification and characterisation of exo- and endo-inulinase from Aspergillus ficuum JNSP5-06. Food Chem. 115: 1206-1212. https://doi.org/10.1016/j.foodchem.2009.01.067
  2. Chi, Z., M., Z. Chi, T. Zhang, G. L. Liu, and L. X. Yue. 2009. Inulinase-expressing microorganisms and applications of inulinases. Appl. Microbiol. Biotechnol. 82: 211-220. https://doi.org/10.1007/s00253-008-1827-1
  3. Choi, E. S., J. H. Sohn, and S. K. Rhee. 1994. Optimization of the expression system using galactose-inducible promoter for the production of anticoagulant hirudin in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 42: 587-594. https://doi.org/10.1007/BF00173925
  4. Kim, S. I., S. I. Kang, Y. J. Chang, and S. J. Oh. 1998. Purification and properties of an endo-inulinase from an Arthrobacter sp. Biotechnol. Lett. 20: 983-986. https://doi.org/10.1023/A:1005405510397
  5. Kushi, R. T., R. Monti, and J. Contiero. 2000. Production, purification and characterization of an extracellular inulinase from Kluyveromyces marxianus var. bulgaricus. J. Ind. Microbiol. Biotechnol. 25: 63-69. https://doi.org/10.1038/sj.jim.7000032
  6. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680- 685. https://doi.org/10.1038/227680a0
  7. Laloux, O., J. P. Cassart, J. Delcour, J. Van Beeumen, and J. Vandenhaute. 1991. Cloning and sequencing of the inulinase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS Lett. 289: 64-68. https://doi.org/10.1016/0014-5793(91)80909-M
  8. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  9. Nam, S. W., K. Yoda, and M. Yamasaki. 1993. Secretion and localization of invertase and inulinase in recombinant Saccharomyces cerevisiae. Biotechnol. Lett. 15: 1049-1054. https://doi.org/10.1007/BF00129936
  10. Pandey, A., C. R. Soccol, P. Selvakumar, V. T. Soccol, N. Krieger, and J. D. Fontana. 1999. Recent developments in microbial inulinases. Its production, properties, and industrial applications. Appl. Biochem. Biotechnol. 81: 35-52. https://doi.org/10.1385/ABAB:81:1:35
  11. Sambrook, I. and W. Russell. Rapid Isolation of Yeast DNA. Molecular Cloning, 3rd Ed., pp. 6-31.
  12. Schiestl, R. H. and R. D. Gietz. 1989. High efficiency transformation of intact yeast cells using single-stranded nucleic acids as a carrier. Curr. Genet. 16: 339-346. https://doi.org/10.1007/BF00340712
  13. Silva-Santisteban, B. O. Y. and F. Maugeri. 2005. Agitation, aeration and shear stress as key factors in inulinase production by Kluyveromyces marxianus. Enz. Microb. Tech. 36: 717-724. https://doi.org/10.1016/j.enzmictec.2004.12.008
  14. Sohn, J. H., S. K. Lee, E. S. Choi, and S. K. Rhee. 1991. Gene expression and secretion of the anticoagulant hirudin in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 1: 266-273.
  15. Whang, J., J. Ahn, C. S. Chun, Y. J. Son, H. Lee, and E. S. Choi. 2009. Efficient, galactose-free production of Candida antarctica lipase B by GAL10 promoter in Δgal80 mutant of Saccharomyces cerevisiae. Process Biochem. 44: 1190-1192.

Cited by

  1. High-level secretory expression and characterization of the recombinant Kluyveromyces marxianus inulinase vol.47, pp.1, 2012, https://doi.org/10.1016/j.procbio.2011.10.002
  2. Engineering an industrial Saccharomyces cerevisiae strain with the inulinase gene for more efficient ethanol production from Jerusalem artichoke tubers vol.13, pp.5, 2010, https://doi.org/10.1002/elsc.201200199
  3. Expression of exoinulinase genes in Saccharomyces cerevisiae to improve ethanol production from inulin sources vol.35, pp.10, 2013, https://doi.org/10.1007/s10529-013-1251-1
  4. Enhanced expression of the codon-optimized exo-inulinase gene from the yeast Meyerozyma guilliermondii in Saccharomyces sp. W0 and bioethanol production from inulin vol.98, pp.21, 2010, https://doi.org/10.1007/s00253-014-6079-7
  5. 재조합 효모 세포의 고농도배양을 통한 섬유소와 자일란 분해효소 유전자의 동시 과발현 vol.46, pp.4, 2010, https://doi.org/10.4014/mbl.1810.10010
  6. Inulinase hyperproduction by Kluyveromyces marxianus through codon optimization, selection of the promoter, and high-cell-density fermentation for efficient inulin hydrolysis vol.69, pp.6, 2010, https://doi.org/10.1007/s13213-019-01457-8