Browse > Article
http://dx.doi.org/10.4014/jmb.1007.07009

Recombinant Production of an Inulinase in a Saccharomyces cerevisiae gal80 Strain  

Lim, Seok-Hwan (Industrial Biotechnology Research Center)
Lee, Hong-Weon (Biotechnology Process Engineering Center, KRIBB)
Sok, Dai-Eun (College of Pharmacy, Chungnam National University)
Choi, Eui-Sung (Industrial Biotechnology Research, KRIBB)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.11, 2010 , pp. 1529-1533 More about this Journal
Abstract
The inulinase gene (INU1) from Kluyveromyces marxianus NCYC2887 was overexpressed by using the GAL10 promotor in a ${\Delta}ga180$ strain of Saccharomyces cerevisiae. The inulinase gene lacking the original signal sequence was fused in-frame to a mating factor ${\alpha}$ signal sequence for secretory expression. Use of the ${\Delta}ga180$ strain allowed for the galactose-free induction of inulinase expression using a glucose-only medium. Shake-flask cultivation in YPD medium produced 34.6 U/ml of the recombinant inulinase, which was approximately 13-fold higher than that produced by K. marxianus NCYC2887. It was found that the use of the ${\Delta}ga180$ strain improved the expression of inulinase in the recombinant S. cerevisiae in both aerobic and anaerobic conditions by about 2.9- and 1.7-fold, respectively. A 5-l fed-batch fermentation using YPD medium was performed under aerobic condition with glucose feeding, which resulted in the inulinase production of 31.7 U/ml at the $OD_{600}$ of 67. Ethanol fermentation of dried powder of Jerusalem artichoke, an inulin-rich biomass, was also performed using the recombinant S. cerevisiae expressing INU1 and K. marxianus NCYC2887. Fermentation in a 5-l scale fermentor was carried out at an aeration rate of 0.2 vvm, an agitation rate of 300 rpm, and with the pH controlled at 5.0. The temperature was maintained at $30^{\circ}C$ and $37^{\circ}C$, respectively, for the recombinant S. cerevisiae and K. marxianus. The maximum productivities of ethanol were 59.0 and 53.5 g/l, respectively.
Keywords
Inulinase; recombinant; Saccharomyces cerevisiae; ${\Delta}ga180$; Jerusalem artichoke;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Kushi, R. T., R. Monti, and J. Contiero. 2000. Production, purification and characterization of an extracellular inulinase from Kluyveromyces marxianus var. bulgaricus. J. Ind. Microbiol. Biotechnol. 25: 63-69.   DOI   ScienceOn
2 Whang, J., J. Ahn, C. S. Chun, Y. J. Son, H. Lee, and E. S. Choi. 2009. Efficient, galactose-free production of Candida antarctica lipase B by GAL10 promoter in Δgal80 mutant of Saccharomyces cerevisiae. Process Biochem. 44: 1190-1192.
3 Laloux, O., J. P. Cassart, J. Delcour, J. Van Beeumen, and J. Vandenhaute. 1991. Cloning and sequencing of the inulinase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS Lett. 289: 64-68.   DOI   ScienceOn
4 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
5 Nam, S. W., K. Yoda, and M. Yamasaki. 1993. Secretion and localization of invertase and inulinase in recombinant Saccharomyces cerevisiae. Biotechnol. Lett. 15: 1049-1054.   DOI   ScienceOn
6 Pandey, A., C. R. Soccol, P. Selvakumar, V. T. Soccol, N. Krieger, and J. D. Fontana. 1999. Recent developments in microbial inulinases. Its production, properties, and industrial applications. Appl. Biochem. Biotechnol. 81: 35-52.   DOI   ScienceOn
7 Sambrook, I. and W. Russell. Rapid Isolation of Yeast DNA. Molecular Cloning, 3rd Ed., pp. 6-31.
8 Schiestl, R. H. and R. D. Gietz. 1989. High efficiency transformation of intact yeast cells using single-stranded nucleic acids as a carrier. Curr. Genet. 16: 339-346.   DOI   ScienceOn
9 Silva-Santisteban, B. O. Y. and F. Maugeri. 2005. Agitation, aeration and shear stress as key factors in inulinase production by Kluyveromyces marxianus. Enz. Microb. Tech. 36: 717-724.   DOI   ScienceOn
10 Sohn, J. H., S. K. Lee, E. S. Choi, and S. K. Rhee. 1991. Gene expression and secretion of the anticoagulant hirudin in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 1: 266-273.
11 Chen, H. Q., X. M. Chen, Y. Li, J. Wang, Z. Y. Jina, X. M. Xua, Z. W. Zhao, T. X. Chen, and Z. J. Xie. 2009. Purification and characterisation of exo- and endo-inulinase from Aspergillus ficuum JNSP5-06. Food Chem. 115: 1206-1212.   DOI   ScienceOn
12 Chi, Z., M., Z. Chi, T. Zhang, G. L. Liu, and L. X. Yue. 2009. Inulinase-expressing microorganisms and applications of inulinases. Appl. Microbiol. Biotechnol. 82: 211-220.   DOI   ScienceOn
13 Choi, E. S., J. H. Sohn, and S. K. Rhee. 1994. Optimization of the expression system using galactose-inducible promoter for the production of anticoagulant hirudin in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 42: 587-594.   DOI   ScienceOn
14 Kim, S. I., S. I. Kang, Y. J. Chang, and S. J. Oh. 1998. Purification and properties of an endo-inulinase from an Arthrobacter sp. Biotechnol. Lett. 20: 983-986.   DOI   ScienceOn
15 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680- 685.   DOI   ScienceOn