DOI QR코드

DOI QR Code

The In Vitro Antioxidant Properties of Chinese Highland Lichens

  • Luo, Heng (Korean Lichen Research Institute, Sunchon National University) ;
  • Yamamoto, Yoshikazu (Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University) ;
  • Liu, Yanpeng (Korean Lichen Research Institute, Sunchon National University) ;
  • Jung, Jae-Sung (Korean Lichen Research Institute, Sunchon National University) ;
  • Kahng, Hyung-Yeel (Korean Lichen Research Institute, Sunchon National University) ;
  • Koh, Young-Jin (Korean Lichen Research Institute, Sunchon National University) ;
  • Hur, Jae-Seoun (Korean Lichen Research Institute, Sunchon National University)
  • Received : 2010.03.17
  • Accepted : 2010.08.04
  • Published : 2010.11.28

Abstract

The antioxidant properties of 46 lichen species, collected from the highly UV-exposed alpine areas of southwestern China, were evaluated for their potential therapeutic utilization. The anti-linoleic acid peroxidation activity, 1,1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging activity, reducing power, and total phenolic contents were all assessed in vitro in the methanol extract of the lichens. A potent reducing power was detected in a number of the lichen extracts, when compared with butylated hydroxyanisole (BHA). In general, it was found that many of the lichens, with antioxidant properties, contained large quantities of phenolic content. Extracts of Peltigera praetextata and Sticta nylanderiana were found to exhibit the most potent activity in all of the antioxidant tests. In particular, extracts of S. nylanderiana displayed a 1.37 times greater anti-linoleic acid peroxidation activity, when compared with the ascorbic acid used as the positive control. S. nylanderiana also possessed the strongest free radical scavenging activity amongst all the tested species, with an inhibition rate of 90.4% at concentration of $330{\mu}g/ml$. Activity-guided bioautographic TLC and HPLC analyses were used to establish which compounds were responsible for the potent antioxidant activities of the S. nylanderiana extract. These analyses revealed lecanoric acid to be primarily responsible for the effective antioxidant properties of S. nylanderiana. Overall, these results have indicated that several highland lichens have the potential of being utilized as novel bioresources for naturally occurring antioxidant therapies.

Keywords

References

  1. Behera, B. C., N. Verma, A. Sonone and U. Makhija. 2006. Determination of antioxidative potential of lichen Usnea ghattensis in vitro. LWT Food Sci. Technol. 39: 80-85. https://doi.org/10.1016/j.lwt.2004.11.007
  2. Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 26: 1199-1200.
  3. Chaaib, F., E. F. Queiroz, K. Ndjoko, D. Diallo and K. Hostettmann. 2003. Antifungal and antioxidant compounds from the root bark of Fagara zanthoxyloides. Planta Med. 69: 316-320. https://doi.org/10.1055/s-2003-38877
  4. Grice, H. C. 1986. Safety evaluation of butylated hydroxytoluene (BHT) in the liver, lung and gastrointestinal tract. Food Chem. Toxicol. 24: 1127-1130. https://doi.org/10.1016/0278-6915(86)90298-X
  5. Gulluce, M., A. Aslan, M. Sokmen, F. Sahin, A. Adiguzel, G. Agar, and A. Sokmen. 2006. Screening the antioxidant and antimicrobial properties of the lichens Parmelia saxatilis, Platismatia glauca, Ramalina pollinaria, Ramalina polymorpha and Umbilicaria nylanderiana. Phytomedicine 13: 515-521. https://doi.org/10.1016/j.phymed.2005.09.008
  6. Harada, H. and L. S. Wang. 2004. Diversity of lichens in Yunnan. Lichenology 2: 173.
  7. Huneck, S. and I. Yoshimura. 1996. Identification of Lichen Substances, pp. 160, 264. Springer-Verleg, New York.
  8. Hur, J. S., L. S. Wang, S. O. Oh, G. H. Kim, K. M. Lim, J. S. Jung, and Y. J. Koh. 2005. Highland marcolichen flora of northwestern Yunnan, China. J. Microbiol. 43: 228-236
  9. Kranner, I., W. J. Cram, M. Zorn, S. Wornik, I. Yoshimura, E, Stabentheiner, and H. W. Pfeifhofer. 2005. Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. PNAS 102: 3141-3146. https://doi.org/10.1073/pnas.0407716102
  10. Kranner, I., R. Beckett, A. Hochman, and T. H. Nash III. 2008. Desiccation-tolerance in lichens: A review. Bryologist 111: 576-593. https://doi.org/10.1639/0007-2745-111.4.576
  11. Lopes, T. I. B., R. G. Coelho, N. C. Yoshida, and N. K. Honda. 2008. Radical-scavenging activity orsellinates. Chem. Pharm. Bull. 56: 1551-1554. https://doi.org/10.1248/cpb.56.1551
  12. Luo, H., Y. Yamamota, J. A. Kim, J. S. Jung, Y. J. Koh, and J. S. Hur. 2009. Lecanoric acid, a secondary lichen substance with antioxidant properties from Umbilicaria antarctica in maritime Antarctica (King George Island). Polar Biol. 32: 1033-1040. https://doi.org/10.1007/s00300-009-0602-9
  13. Meir, S., J. Kanner, B. Akiri, and S. P. Hadas. 1995. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J. Agric. Food Chem. 43: 1813-1817. https://doi.org/10.1021/jf00055a012
  14. Mitsuda, H., K. Yuasumoto, and K. Iwami. 1996. Antioxidation action of indole compounds during the autoxidation of linoleic acid. Nihon Eiyo Shokuryo Gakkai Shi 19: 210-214.
  15. Oyaizu, M. 1986. Studies on product of browning reaction prepared from glucose amine. Jap. J. Nutr. 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  16. Rice-Evans, C. A., N. J. Miller, P. G. Bolwell, P. M. Barmley, and J. B. Pridham. 1995. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 22: 375-383. https://doi.org/10.3109/10715769509145649
  17. Rice-Evans, C. A., N. J. Miller, and G. Paganga. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2: 152-159. https://doi.org/10.1016/S1360-1385(97)01018-2
  18. Slinkard, K. and V. L. Singleton. 1977. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 28: 49-55
  19. Stocker-Wörgötter, E. 2008. Metabolic diversity of lichenforming ascomycetous fungi: Culturing, polyketide and shikimate metabolite production, and PKS gene. Nat. Prod. Rep. 25: 188- 200. https://doi.org/10.1039/b606983p
  20. Wichi, H. P. 1988. Enhanced tumor development by butylated hydroxyanisole (BHA) from the prospective of effect on forestomach and oesophageal squamous epithelium. Food Chem. Toxicol. 26: 717-723. https://doi.org/10.1016/0278-6915(88)90072-5
  21. Yoshimura, I., Y. Kinoshita, Y. Yamamoto, S. Huneck, and Y. Yamada. 1994. Analysis of secondary metabolites from lichen by high performance liquid chromatography with a photodiode array detector. Phytochem. Anal. 5: 197-205. https://doi.org/10.1002/pca.2800050405
  22. Zeybek, U. and A. Yildiz. 2000. Studies on the Northeast Anatolian lichens Lobaria scrobiculata and L. pulmonaria. Sci. Pharm. 68: 317-322.

Cited by

  1. Biopharmaceutical potential of lichens vol.50, pp.6, 2010, https://doi.org/10.3109/13880209.2011.633089
  2. A new reducing polyketide synthase gene from the lichen-forming fungus Cladonia metacorallifera vol.104, pp.2, 2010, https://doi.org/10.3852/11-001
  3. Cytotoxic Activity and Antioxidant Capacity of Purified Lichen Metabolites: An In Vitro Study vol.27, pp.3, 2010, https://doi.org/10.1002/ptr.4739
  4. Antioxidant Properties of Various Microorganisms Isolated from Arctic Lichen Stereocaulon spp. vol.41, pp.3, 2010, https://doi.org/10.4014/kjmb.1303.03004
  5. Antiproliferative activity of three lichen species belonging to the genus Peltigera vol.148, pp.1, 2010, https://doi.org/10.1080/11263504.2012.760015
  6. In vitro cytotoxicity, genotoxicity and antioxidant potentials of thymol on human blood cells vol.26, pp.2, 2010, https://doi.org/10.1080/10412905.2013.860411
  7. Genotoxic and oxidative damage potentials in human lymphocytes after exposure to terpinolene in vitro vol.67, pp.3, 2010, https://doi.org/10.1007/s10616-014-9698-z
  8. The effects of Cetraria islandica and Pseudevernia furfuracea extracts in normal and diabetic rats vol.31, pp.12, 2015, https://doi.org/10.1177/0748233713475521
  9. In vitro assessment of cytogenetic and oxidative effects of α-pinene vol.32, pp.1, 2016, https://doi.org/10.1177/0748233713498456
  10. Antioxidant potential of lichen species and their secondary metabolites. A systematic review vol.54, pp.1, 2016, https://doi.org/10.3109/13880209.2014.1003354
  11. In vitro risk assessment of usnic acid vol.32, pp.3, 2010, https://doi.org/10.1177/0748233713504811
  12. The biochemical and histological effects of lichens in normal and diabetic rats vol.32, pp.4, 2010, https://doi.org/10.1177/0748233713506769
  13. Investigation of cytotoxic, genotoxic and oxidative properties of carvacrol in human blood cells vol.32, pp.4, 2010, https://doi.org/10.1177/0748233713506771
  14. Evaluating the toxic and beneficial effects of lichen extracts in normal and diabetic rats vol.32, pp.8, 2010, https://doi.org/10.1177/0748233714566873
  15. Comparative analysis of the antioxidant properties of Icelandic and Hawaiian lichens vol.18, pp.8, 2010, https://doi.org/10.1111/1462-2920.12850
  16. Secondary metabolism in the lichen symbiosis vol.47, pp.5, 2010, https://doi.org/10.1039/c7cs00431a
  17. DNA-SIP Reveals the Diversity of Chemolithoautotrophic Bacteria Inhabiting Three Different Soil Types in Typical Karst Rocky Desertification Ecosystems in Southwest China vol.76, pp.4, 2010, https://doi.org/10.1007/s00248-018-1196-y
  18. Cohnella candidum sp. nov., radiation-resistant bacterium from soil vol.112, pp.7, 2010, https://doi.org/10.1007/s10482-019-01233-3
  19. HPLC Fingerprint Analysis with the Antioxidant and Cytotoxic Activities of Selected Lichens Combined with the Chemometric Calculations vol.25, pp.18, 2020, https://doi.org/10.3390/molecules25184301