References
- Bennis, S., F. Chami, N. Chami, T. Bouchikhi, and A. Remmai. 2004. Surface alteration of Saccharomyces cerevisiae induced by thymol and eugenol. Lett. Appl. Microbiol. 38: 454-458. https://doi.org/10.1111/j.1472-765X.2004.01511.x
- Chami, F., N. Chami, S. Bennis, T. Bouchikhi, and A. Remmai. 2005. Oregano and clove essential oils induce surface alteration of Saccharomyces cerevisiae. Phytother. Res. 19: 405-408. https://doi.org/10.1002/ptr.1528
- Chen, R. M., L. H. Hu, T. Y. An, J. Li, and Q. Shen. 2002. Natural PTP1B inhibitors from Broussonetia papyrifera. Bioorg. Med. Chem. Lett. 12: 3387-3390. https://doi.org/10.1016/S0960-894X(02)00757-6
- Cheng, Z., C. Lin, T. Hwang, and C. Teng. 2001. Broussochalcone A, a potent antioxidant and effective suppressor of inducible nitric oxide synthase in lipopolysaccharide-activated macrophages. Biochem. Pharmacol. 61: 939-946. https://doi.org/10.1016/S0006-2952(01)00543-3
- Chi, Y. S., H. G. Jong, K. H. Son, H. W. Chang, S. S. Kang, and H. P. Kim. 2001. Effects of naturally occurring prenylated flavonoids on enzymes metabolizing arachidonic acid: Cyclooxygenases and lipoxygenases. Biochem. Pharmacol. 62: 1185-1191. https://doi.org/10.1016/S0006-2952(01)00773-0
- Fernandes, A. R., F. M. Prieto, and I. Sa-Correia. 2000. Modification of plasma membrane lipid order and H+-ATPase activity as part of the response of Saccharomyces cerevisiae to cultivation under mild and high copper stress. Arch. Microbiol. 173: 262-268. https://doi.org/10.1007/s002030000138
- Grayer, R. J. and J. B. Harborne. 1994. Survey of antifungal compounds from higher plants. Phytochemistry 37: 19-42. https://doi.org/10.1016/0031-9422(94)85005-4
- Hwang, J. H. and B. M. Lee. 2007. Inhibitory effects of plant extracts on tyrosinase, L-DOPA oxidation, and melanin synthesis. J. Toxicol. Environ. Health A 70: 393-407. https://doi.org/10.1080/10937400600882871
- Iida, Y., H. Yonemura, K. B. Oh, M. Saito, and H. Matsuoka. 1999. Sensitive screening of antifungal compounds from acetone extracts of medicinal plants with a Bio-Cell Tracer. Yakugaku Zasshi 119: 964-971. https://doi.org/10.1248/yakushi1947.119.12_964
- Jones, R. N. and A. L. Barry. 1987. The antimicrobial activity of A-56268 (TE-031) and roxithromycin (RU965) against Legionella using broth microdilution method. J. Antimicrob. Chemother. 19: 841-842. https://doi.org/10.1093/jac/19.6.841
- Ko, H. H., S. M. Yu, F. N. Ko, C. M. Teng, and C. N. Lin. 1997. Bioactive constituents of Morus australis and Broussonetia papyrifera. J. Nat. Prod. 60: 1008-1011. https://doi.org/10.1021/np970186o
- Ko, H. H., W. L. Chang, and T. M. Lu. 2008. Antityrosinase and antioxidant effects of ent-kaurane diterpenes from leaves of Broussonetia papyrifera. J. Nat. Prod. 71: 1930-1933. https://doi.org/10.1021/np800564z
- Kwak, W. J., T. C. Moon, C. X. Lin, H. G. Rhyn, H. Jung, E. Lee, et al. 2003. Papyriflavonol A from Broussonetia papyrifera inhibits the passive cutaneous anaphylaxis reaction and has a secretory phospholipase A2-inhibitory activity. Biol. Pharm. Bull. 26: 299-302. https://doi.org/10.1248/bpb.26.299
- Lee, D., K. P. Bhat, H. H. Fong, N. R. Farnsworth, J. M. Pezzuto, and A. D. Kinghorn. 2001. Aromatase inhibitors from Broussonetia papyrifera. J. Nat. Prod. 64: 1286-1293. https://doi.org/10.1021/np010288l
- Lee, D. G., Y. Park, I. P. Kim, H. G. Jeong, E. R. Woo, and K. S. Hahm. 2002. Influence on the plasma membrane of Candida albicans by HP (2-9)-magainin 2 (1-12) hybrid peptide. Biochem. Biophys. Res. Comm. 297: 885-889. https://doi.org/10.1016/S0006-291X(02)02230-1
- Lee, N. K., K. H. Son, H. W. Chang, S. S. Kang, H. Park, M. Y. Heo, and H. P. Kim. 2004. Prenylated flavonoids as tyrosinase inhibitors. Arch. Pharm. Res. 27: 1132-1135. https://doi.org/10.1007/BF02975118
- Lin, L. W., H. Y. Chen, C. R. Wu, P. M. Liao,Y. T. Lin, M. T. Hsieh, and H. Ching. 2008. Comparison with various parts of Broussonetia papyrifera as to the antinociceptive and antiinflammatory activities in rodents. Biosci. Biotechnol. Biochem. 72: 2377-2384. https://doi.org/10.1271/bbb.80276
- Mei, R. Q., Y. H. Wang, G. H. Du, G. M. Liu, L. Zhang, and Y. X. Cheng. 2009. Antioxidant lignans from the fruits of Broussonetia papyrifera. J. Nat. Prod. 72: 621-625. https://doi.org/10.1021/np800488p
- Pei, R. S., F. Zhou, B. P. Ji, and J. Xu. 2009. Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. J. Food Sci. 74: M379-M383. https://doi.org/10.1111/j.1750-3841.2009.01287.x
- Perry, L. M. and J. Metzger. 1980. Medicinal Plants of East and Southeast Asia: Attributed Properties and Uses MIT Press.
- Pinto, E., L. Vale-Silva, C. Cavaleiro, and L. Salgueiro. 2009. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 58: 1454-1462. https://doi.org/10.1099/jmm.0.010538-0
- Ryu, H. W., B. W. Lee, M. J. Curtis-Long, S. Jung, Y. B. Ryu, W. S. Lee, and K. H. Park. 2010. Polyphenols from Broussonetia papyrifera displaying potent alpha-glucosidase inhibition. J. Agric. Food Chem. 13: 202-208.
- Sohn, H. Y., K. H. Son, C. S. Kwon, G. S. Kwon, and S. S. Kang. 2004. Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussoetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine 11: 666-672. https://doi.org/10.1016/j.phymed.2003.09.005
- Son, K. H., S. J. Kwon, H. W. Chang, H. P. Kim, and S. S. Kang. 2001. Papyriflavonol A, a new prenylated flavonol from Broussonetia papyrifera. Fitoterapia 72: 456-458. https://doi.org/10.1016/S0367-326X(00)00329-4
- Tsai, F. H., J. C. Lien, L. W. Lin, H. Y. Chen, H. Ching, and C. R. Wu. 2009. Protective effect of Broussonetia papyrifera against hydrogen peroxide-induced oxidative stress in SH-SY5Y cells. Biosci. Biotechnol. Biochem. 73: 1933-1939. https://doi.org/10.1271/bbb.90080
- Wong, K. S. and W. K. Tsang. 2009. In vitro antifungal activity of the aqueous extract of Scutellaria baicalensis Georgi root against Candida albicans. Int. J. Antimicrob. Agents 34: 284- 285. https://doi.org/10.1016/j.ijantimicag.2009.03.007
- Woo, S. S., Y. K. Park, C. H. Choi, K. S. Hahm, and D. G. Lee. 2007. Mode of antibacterial action of a signal peptide, Pep27 from Streptococcus pneumoniae. Biochem. Biophys. Res. Commun. 363: 806-810. https://doi.org/10.1016/j.bbrc.2007.09.041
- Yan, D., C. Jin, X. H. Xiao, and X. P. Dong. 2008. Antimicrobial properties of berberines alkaloids in Coptis chinensis Franch by microcalorimetry. J. Biochem. Biophys. Methods 70: 845-849. https://doi.org/10.1016/j.jbbm.2007.07.009
Cited by
- Therapeutic Effect of Broussonetia papyrifera and Lonicera japonica in Ovalbumin-induced Murine Asthma Model vol.8, pp.11, 2013, https://doi.org/10.1177/1934578x1300801127
- Activité anticandidosique de divers extraits d’Artemisia mesatlantica M. vol.14, pp.5, 2010, https://doi.org/10.1007/s10298-015-0998-z
- Anti-Thrombosis Activity of Sinapic Acid Isolated from the Lees of Bokbunja Wine vol.26, pp.1, 2010, https://doi.org/10.4014/jmb.1508.08095
- Exploration of Medicinal Plants as Sources of Novel Anticandidal Drugs vol.19, pp.28, 2019, https://doi.org/10.2174/1568026619666191025155856
- Effect of Broussonetia papyrifera L. silage on blood biochemical parameters, growth performance, meat amino acids and fatty acids compositions in beef cattle vol.33, pp.5, 2010, https://doi.org/10.5713/ajas.19.0150
- Broussonetia papyrifera Promotes Hair Growth Through the Regulation of β-Catenin and STAT6 Target Proteins: A Phototrichogram Analysis of Clinical Samples vol.7, pp.2, 2010, https://doi.org/10.3390/cosmetics7020040
- Anti-Fungal Efficacy and Mechanisms of Flavonoids vol.9, pp.2, 2020, https://doi.org/10.3390/antibiotics9020045
- Natural compounds with dual antimicrobial and anti-inflammatory effects vol.19, pp.6, 2010, https://doi.org/10.1007/s11101-020-09694-5
- Antioxidant evaluation-guided chemical profiling and structure-activity analysis of leaf extracts from five trees in Broussonetia and Morus (Moraceae) vol.10, pp.None, 2010, https://doi.org/10.1038/s41598-020-61709-5
- Polyphenols from Broussonetia papyrifera Induce Apoptosis of HepG2 Cells via Inactivation of ERK and AKT Signaling Pathways vol.2021, pp.None, 2010, https://doi.org/10.1155/2021/8841706