DOI QR코드

DOI QR Code

Acidophilic Tannase from Marine Aspergillus awamori BTMFW032

  • Beena, P.S. (Department of Biotechnology, Cochin University of Science and Technology) ;
  • Soorej, M.B. (Department of Biotechnology, Cochin University of Science and Technology) ;
  • Elyas, K.K. (Department of Biotechnology, Cochin University of Science and Technology) ;
  • Sarita, G. Bhat (Department of Biotechnology, Cochin University of Science and Technology) ;
  • Chandrasekaran, M. (Department of Biotechnology, Cochin University of Science and Technology)
  • Received : 2010.04.27
  • Accepted : 2010.06.14
  • Published : 2010.10.28

Abstract

Aspergillus awamori BTMFW032, isolated from sea water, produced tannase as an extracellular enzyme under submerged culture conditions. Enzymes with a specific activity of 2,761.89 IU/mg protein, a final yield of 0.51%, and a purification fold of 6.32 were obtained after purification through to homogeneity, by ultrafiltration and gel filtration. SDS-PAGE analyses, under nonreducing and reducing conditions, yielded a single band of 230 kDa and 37.8 kDa, respectively, indicating the presence of six identical monomers. A pI of 4.4 and a carbohydrate content of 8.02% were observed in the enzyme. The optimal temperature was found to be $30^{\circ}C$, although the enzyme was active in the range of $5-80^{\circ}C$. Two pH optima, pH 2 and pH 8, were recorded, although the enzyme was instable at a pH of 8, but stable at a pH of 2.0 for 24 h. Methylgallate recorded maximal affinity, and $K_m$ and $V_{max}$ were recorded at $1.9{\times}10^{-3}$M and 830 ${\mu}Mol$/min, respectively. The impacts of a number of metal salts, solvents, surfactants, and other typical enzyme inhibitors on tannase activity were determined in order to establish the novel characteristics of the enzyme. The gene encoding tannase, isolated from A. awamori, was found to be 1.232 kb, and nucleic acid sequence analysis revealed an open reading frame consisting of 1,122 bp (374 amino acids) of one stretch in the -1 strand. In silico analyses of gene sequences, and a comparison with reported sequences of other species of Aspergillus, indicate that the acidophilic tannase from marine A. awamori differs from that of other reported species.

Keywords

References

  1. Adachi, O., M. Watanabe, and H. Yamada. 1968. Studies on fungal tannase Part II. Physicochemical properties of the tannase from Aspergillus flavus. Agric. Biol. Chem. 32: 1079-1085. https://doi.org/10.1271/bbb1961.32.1079
  2. Aguilar, C. N., R. Rodriguez, G. Gutierrez-Sanchez, C. Augur, E. Favela-Torres, L. A. Prado-Barragan, A. Ramirez-Coronel, and J. C. Contreras-Esquivel. 2007. Microbial tannases: Advances and perspectives. Appl. Microbiol. Biotechnol. 76: 47-59. https://doi.org/10.1007/s00253-007-1000-2
  3. Aoki, K., R. Shinke, and H. Nishira. 1976. Purification and some properties of yeast tannase. Agric. Biol. Chem. 40: 79-85. https://doi.org/10.1271/bbb1961.40.79
  4. Aoki, K., T. Tanaka, R. Shinke, and H. Nishira. 1979. Detection of tannase in polyacrylamide gels. J. Chromatogr. 170: 446-448. https://doi.org/10.1016/S0021-9673(00)95474-8
  5. Bajpai, B. and S. Patil. 1996. Tannin acyl hydrolase (E.C. 3.1.1.20) activity of Aspergillus, Penicillium, Fusarium, and Trichoderma. World J. Microbiol. Biotechnol. 12: 217-220. https://doi.org/10.1007/BF00360918
  6. Barthomeuf, C., F. Regerat, and H. Pourrat. 1994. Production, purification and characterization of tannase from Aspergillus niger LCF8. J. Ferment. Technol. 77: 137-142.
  7. Battestin, V. and G. A. Macedo. 2007. Tannase production by Paecilomyces variotii. Bioresour. Technol. 98: 1832-1837. https://doi.org/10.1016/j.biortech.2006.06.031
  8. Battestin, V., G. A. Macedo, and V. A. P. De Freitas. 2008. Hydrolysis of epigallocatechin gallate using a tannase from Paecilomyces variotii. Food Chem. 108: 228-233. https://doi.org/10.1016/j.foodchem.2007.10.068
  9. Belmares, R., J. C. Contreras-Esqcirel, R. Rodriguez-Herrera, A. Ramirez Coronel, and C. N. Aguilar. 2004. Microbial production of tannase: An enzyme with potential use in the food industry. Lebensm. Wiss. Technol. 37: 857-864. https://doi.org/10.1016/j.lwt.2004.04.002
  10. Bhardwaj, R., B. Singh, and T. K. Bhat. 2003. Purification and characterization of tannin acyl hydrolase from A. niger MTCC- 2425. J. Basic Microbiol. 43: 449-461. https://doi.org/10.1002/jobm.200310273
  11. Boumans, H., M. C. van Gaalen, L. A. Grivell, and J. A. Berden. 1997. Differential inhibition of the yeast bc1 complex by phenanthrolines and ferroin. Implications for structure and catalytic mechanism. J. Biol. Chem. 272: 16753-16760. https://doi.org/10.1074/jbc.272.27.16753
  12. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  13. Brummer, W. and G. Gunzer. 1987. Laboratory techniques of enzyme recovery, pp. 260-264. In J. F. Kennedy (ed.). Biotechnology, Vol. 7a. VCH, Weinheim, Germany.
  14. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356. https://doi.org/10.1021/ac60111a017
  15. Farias, G. M., C. Gorbea, J. R. Elkins, and G. J. Griffin. 1994. Purification, characterization, and substrate relationships of the tannase from Cryphonectria parasitica. Physiol. Mol. Plant Pathol. 44: 51-63. https://doi.org/10.1016/S0885-5765(05)80094-3
  16. Gander, J. E. 1984. Gel protein stains: Glycoproteins. Methods Enzymol. 104: 447-449. https://doi.org/10.1016/S0076-6879(84)04112-4
  17. García-Conesa, M. T., P. Ostergaard, S. Kauppinen, and G. Williamson. 2001. Hydrolysis of diethyl diferulates by a tannase from Aspergillus oryzae: Breaking cross-links between plant cell wall polymers. Carbohydr. Polym. 44: 319-324. https://doi.org/10.1016/S0144-8617(00)00248-4
  18. Hatamoto, O., T. Watarai, M. Kikuchi, K. Mizusawa, and H. Sekine. 1996. Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene 175: 215-221. https://doi.org/10.1016/0378-1119(96)00153-9
  19. Iibuchi, S., Y. Minoda, and K. Yamada. 1968. Studies on tannin acyl hydrolase of microorganisms Part III. Purification of the enzyme and some properties of it. Agric. Biol. Chem. 32: 803- 809. https://doi.org/10.1271/bbb1961.32.803
  20. Iibuchi, S., Y. Minoda, and K. Yamada. 1972. Hydrolyzing pathway, substrate specificity and inhibition of tannin acyl hydrolase of Asp. orzo No.7. Agric. Biol. Chem. 36: 1553- 1562. https://doi.org/10.1271/bbb1961.36.1553
  21. Ikasari, L. and D. A. Mitchell. 1996. Leaching and characterization of Rhizopus oligosporus acid protease from solid-state fermentation. Enzyme Microb. Technol. 19: 171-175. https://doi.org/10.1016/0141-0229(95)00227-8
  22. Jun, C. S., M. J. Yoo, W. Y. Lee, K. C. Kwak, M. S. Bae, W. T. Hwang, D. H. Son, and K. Y. Chai. 2007. Ester derivatives from tannase-treated prunioside A and their anti-inflammatory activities. Bull. Korean Chem. Soc. 28: 73-76. https://doi.org/10.5012/bkcs.2007.28.1.073
  23. Kar, B., R. Banerjee, and B. C. Bhattacharyya. 2003. Effect of additives on the behavioral properties of tannin acyl hydrolase. Process Biochem. 38: 1285-1293. https://doi.org/10.1016/S0032-9592(02)00329-1
  24. Kasieczka-Burnecka, M., K. Kuc, H. Kalinowska, M. Knap, and M. Turkiewicz. 2007. Purification and characterization of two cold-adapted extracellular tannin acyl hydrolases from an Antarctic strain Verticillium sp. P9. Appl. Microbiol. Biotechnol. 77: 77-89. https://doi.org/10.1007/s00253-007-1124-4
  25. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227: 680-685. https://doi.org/10.1038/227680a0
  26. Lee, S. B. and J. W. Taylor. 1990. Isolation of DNA from fungal mycelia and single spores, pp. 282-287. In M. A. Innis, D. H. Gefland, J. J. Sninsky, and T. J. White (eds.). PCR Protocols: A Guide to Methods and Applications. Academic Press San Diego, California.
  27. Lekha, P. K. and B. K. Lonsane. 1994. Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL 104 in solid-state, liquid surface and submerged fermentations. Process Biochem. 29: 497-503. https://doi.org/10.1016/0032-9592(94)85019-4
  28. Lekha, P. K. and B. K. Lonsane. 1997. Production and application of tannin acyl hydrolase. State of the art. Adv. Appl. Microbiol. 44: 215-260. https://doi.org/10.1016/S0065-2164(08)70463-5
  29. Lu, M. J. and C. Chen. 2007. Enzymatic tannase treatment of green tea increases in vitro inhibitory activity against Nnitrosation of dimethylamine. Process Biochem. 42: 1285-1290 https://doi.org/10.1016/j.procbio.2007.06.003
  30. Lu, M. J. and C. Chen. 2008. Enzymatic modification by tannase increases the antioxidant activity of green tea. Food Res. Int. 41: 130-137. https://doi.org/10.1016/j.foodres.2007.10.012
  31. Machida, M., M. Sano, K. Tamano, Y. Terabayashi, N. Yamane, O. Hatamoto, et al. 2009. Genomics of industrial filamentous fungi, Aspergillus oryzae and Aspergillus awamori. The 17th Congress of the International Society for Human and Animal Mycology, Tokyo.
  32. Mahapatra, K., R. K. Nanda, S. S. Bag, R. Banerjee, A. Pandey, and G. Szakacs. 2005. Purification, characterization and some studies on secondary structure of tannase from Aspergillus awamori nakazawa. Process Biochem. 40: 3251-3254. https://doi.org/10.1016/j.procbio.2005.03.034
  33. Marco, M. G., L. V. Rodríguez, E. L. Ramos, J. Renovato, M. A Cruz-Hernandez, R. Rodríguez, J. Contreras, and C. N. Aguilar. 2009. A novel tannase from the xerophilic fungus Aspergillus niger GH1. J. Microbiol. Biotechnol. 19: 987-996. https://doi.org/10.4014/jmb.0811.615
  34. Naidu, R. B., N. Saisubramanian, D. Selvakumar, S. Janardhanan, and R. Puvanakrishnan. 2008. Partial purification of tannase from Aspergillus foetidus by aqueous two-phase extraction and its characterization. Curr. Trends Biotechnol. Pharm. 2: 201-207.
  35. Pohl, T. 1990. Concentration of proteins and removal of solutes. Methods Enzymol. 182: 68-83 https://doi.org/10.1016/0076-6879(90)82009-Q
  36. Raab, T., R. Bel-Rhlid, G. Williamson, C. E. Hansen, and D. Chaillot. 2007. Enzymatic galloylation of catechins in room temperature ionic liquids. J. Mol. Catal. B 44: 60-65. https://doi.org/10.1016/j.molcatb.2006.09.003
  37. Raghukumar, C., U. Muraleedharan, V. R. Gaud, and R. Mishra. 2004. Xylanases of marine fungi of potential use for biobleaching of paper pulp. J. Ind. Microbiol. Biotechnol. 31: 433-441. https://doi.org/10.1007/s10295-004-0165-2
  38. Rajkumar, G. S. and S. C. Nandy. 1983. Isolation, purification, and some properties of Penicillium chrysogenium tannase. Appl. Environ. Microbiol. 46: 525-527.
  39. Sabu, A., G. S. Kiran, and A. Pandey. 2005. Purification and characterization of tannin acyl hydrolase from A. niger ATCC 16620. Food Technol. Biotechnol. 43: 133-138.
  40. Sehgal, A. C., R. Tompson, J. Cavanagh, and R. M. Kelly. 2002. Structural and catalytic response to temperature and cosolvents of carboxylesterase EST1 from the extremely thermoacidophilic archaeon Sulfolobus solfataricus P1. Biotechnol. Bioeng. 80: 784-793. https://doi.org/10.1002/bit.10433
  41. Seth, M. and S. Chand. 2000. Biosynthesis of tannase and hydrolysis of tannins to gallic acid by Aspergillus awamori, optimization of process parameters. Process Biochem. 36: 39- 44. https://doi.org/10.1016/S0032-9592(00)00179-5
  42. Sharma, S., L. Agarwal, and R. K. Saxena. 2008. Purification, immobilization and characterization of tannase from Penicillium variable. Biores. Technol. 99: 2544-2551. https://doi.org/10.1016/j.biortech.2007.04.035
  43. Sharma, S., T. K. Bhat, and R. K. Dawra. 1999. Isolation, purification and properties of tannase from Aspergillus niger van Tieghem. World J. Microbiol. Biotechnol. 15: 673-677. https://doi.org/10.1023/A:1008939816281
  44. Sharma, S., T. K. Bhat, and R. K. Dawra. 2000. A spectrophotometric method for assay of tannase using rhodonine. Anal. Biochem. 278: 85-89.
  45. Singh, R., N. Gupta, V. K. Goswami, and R. Gupta. 2006. A simple activity staining protocol for lipases and esterases. Appl. Microbiol. Biotechnol. 70: 679-682 https://doi.org/10.1007/s00253-005-0138-z
  46. Urbano, G., M. Lopez-Jurado, J. M. Porres, S. Frejnagel, E. Gomez-Villalva, J. Frias, C. Vidal-Valverde, and P. Aranda. 2007. Effect of treatment with $\alpha$-galactosidase, tannase or a cell-wall-degrading enzyme complex on the nutritive utilization of protein and carbohydrates from pea (Pisum sativum L.) flour. J. Sci. Food Agric. 87: 1356-1363. https://doi.org/10.1002/jsfa.2859
  47. Vallee, B. L. and D. D. Ulmer. 1972. Biochemical effects of mercury, cadmium and lead. Annu. Rev. Biochem. 41: 91-128. https://doi.org/10.1146/annurev.bi.41.070172.000515
  48. Van de Lagemaat, J. and D. L. Pyle. 2001. Solid-state fermentation and bioremediation: Development of a continuous process for the production of fungal tannase. Chem. Eng. J. 84: 115-123. https://doi.org/10.1016/S1385-8947(01)00196-6

Cited by

  1. Propyl Gallate Synthesis Using Acidophilic Tannase and Simultaneous Production of Tannase and Gallic Acid by Marine Aspergillus awamori BTMFW032 vol.164, pp.5, 2010, https://doi.org/10.1007/s12010-011-9162-x
  2. Differential Properties of Aspergillus niger Tannase Produced Under Solid-State and Submerged Fermentations vol.165, pp.1, 2010, https://doi.org/10.1007/s12010-011-9258-3
  3. Novel Strategies for Upstream and Downstream Processing of Tannin Acyl Hydrolase vol.2011, pp.None, 2010, https://doi.org/10.4061/2011/823619
  4. Biotechnological Advances and Challenges of Tannase: An Overview vol.5, pp.2, 2012, https://doi.org/10.1007/s11947-011-0608-5
  5. Improvement of Strain Penicillium sp. EZ-ZH190 for Tannase Production by Induced Mutation vol.171, pp.6, 2010, https://doi.org/10.1007/s12010-013-0436-3
  6. Detergent compatible alkaline lipase produced by marine Bacillus smithii BTMS 11 vol.29, pp.8, 2013, https://doi.org/10.1007/s11274-013-1298-0
  7. A New Native Source of Tannase Producer, Penicillium sp. EZ-ZH190: Characterization of the Enzyme vol.11, pp.4, 2010, https://doi.org/10.5812/ijb.11848
  8. Marine enzymes and food industry: insight on existing and potential interactions vol.1, pp.None, 2010, https://doi.org/10.3389/fmars.2014.00046
  9. Nucleotide and amino acid variations of tannase gene from different Aspergillus strains vol.60, pp.8, 2010, https://doi.org/10.1139/cjm-2014-0163
  10. Characterization of a multi-tolerant tannin acyl hydrolase II from Aspergillus carbonarius produced under solid-state fermentation vol.18, pp.6, 2010, https://doi.org/10.1016/j.ejbt.2015.09.008
  11. Optimized Production of Tannase from Cashew Testa usingAspergillus nigerMTCC 5898 vol.30, pp.4, 2010, https://doi.org/10.1080/08905436.2016.1234392
  12. Growth of marine fungi on polymeric substrates vol.16, pp.None, 2016, https://doi.org/10.1186/s12896-016-0233-5
  13. Characterization of Aspergillus fumigatus CAS-21 tannase with potential for propyl gallate synthesis and treatment of tannery effluent from leather industry vol.8, pp.6, 2018, https://doi.org/10.1007/s13205-018-1294-z
  14. Recent trends and advancements in microbial tannase-catalyzed biotransformation of tannins: a review vol.21, pp.4, 2018, https://doi.org/10.1007/s10123-018-0027-9
  15. Marine enzymes and their industrial and biotechnological applications vol.30, pp.4, 2018, https://doi.org/10.23736/s1120-4826.18.02442-4
  16. Purification, Characterization and Application of Tannase Enzyme Isolated from Marine Aspergillus nomius GWA5 vol.12, pp.4, 2010, https://doi.org/10.22207/jpam.12.4.30
  17. Marine Fungi: Biotechnological Perspectives from Deep-Hypersaline Anoxic Basins vol.11, pp.7, 2010, https://doi.org/10.3390/d11070113
  18. A comprehensive review on tannase: Microbes associated production of tannase exploiting tannin rich agro-industrial wastes with special reference to its potential environmental and industrial applicat vol.201, pp.None, 2021, https://doi.org/10.1016/j.envres.2021.111625