Browse > Article
http://dx.doi.org/10.4014/jmb.1007.07026

Fungicidal Effect of Prenylated Flavonol, Papyriflavonol A, Isolated from Broussonetia papyrifera (L.) Vent. Against Candida albicans  

Sohn, Ho-Yong (Department of Food and Nutrition, Andong National University)
Kwon, Chong-Suk (Department of Food and Nutrition, Andong National University)
Son, Kun-Ho (Department of Food and Nutrition, Andong National University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.10, 2010 , pp. 1397-1402 More about this Journal
Abstract
Papyriflavonol A (PapA), a prenylated flavonoid [5,7,3',4'-tetrahydroxy-6,5'-di-(${\gamma},{\gamma}$-dimethylallyl)-flavonol], was isolated from the root barks of Broussonetia papyrifera. Our previous study showed that PapA has a broad-spectrum antimicrobial activity against pathogenic bacteria and fungi. In this study, the mode of action of PapA against Candida albicans was investigated to evaluate PapA as an antifungal agent. The minimal inhibitory concentration (MIC) values were 10~25 ${\mu}g/ml$ for C. albicans and Saccharomyces cerevisiae, Gram-negative bacteria (Escherichia coli and Salmonella typhimurium), and Gram-positive bacteria (Staphylococcus epidermidis and Staphylococcus aureus). The kinetics of cell growth inhibition, scanning electron microscopy, and measurement of plasma membrane florescence anisotrophy revealed that the antifungal activity of PapA against C. albicans and S. cerevisiae is mediated by its ability to disrupt the cell membrane integrity. Compared with amphotericin B, a cell-membrane-disrupting polyene antibiotic, the hemolytic toxicity of PapA was negligible. At 10~25 ${\mu}g/ml$ of MIC levels for the tested strains, the hemolysis ratio of human erythrocytes was less than 5%. Our results suggest that PapA could be a therapeutic fungicidal agent having potential as a broad spectrum antimicrobial agent.
Keywords
Papyriflavonol A; Candida albicans; disruption of cell membrane; hemolysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Cheng, Z., C. Lin, T. Hwang, and C. Teng. 2001. Broussochalcone A, a potent antioxidant and effective suppressor of inducible nitric oxide synthase in lipopolysaccharide-activated macrophages. Biochem. Pharmacol. 61: 939-946.   DOI   ScienceOn
2 Ko, H. H., S. M. Yu, F. N. Ko, C. M. Teng, and C. N. Lin. 1997. Bioactive constituents of Morus australis and Broussonetia papyrifera. J. Nat. Prod. 60: 1008-1011.   DOI   ScienceOn
3 Lee, D., K. P. Bhat, H. H. Fong, N. R. Farnsworth, J. M. Pezzuto, and A. D. Kinghorn. 2001. Aromatase inhibitors from Broussonetia papyrifera. J. Nat. Prod. 64: 1286-1293.   DOI   ScienceOn
4 Sohn, H. Y., K. H. Son, C. S. Kwon, G. S. Kwon, and S. S. Kang. 2004. Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussoetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine 11: 666-672.   DOI   ScienceOn
5 Ryu, H. W., B. W. Lee, M. J. Curtis-Long, S. Jung, Y. B. Ryu, W. S. Lee, and K. H. Park. 2010. Polyphenols from Broussonetia papyrifera displaying potent alpha-glucosidase inhibition. J. Agric. Food Chem. 13: 202-208.
6 Son, K. H., S. J. Kwon, H. W. Chang, H. P. Kim, and S. S. Kang. 2001. Papyriflavonol A, a new prenylated flavonol from Broussonetia papyrifera. Fitoterapia 72: 456-458.   DOI   ScienceOn
7 Yan, D., C. Jin, X. H. Xiao, and X. P. Dong. 2008. Antimicrobial properties of berberines alkaloids in Coptis chinensis Franch by microcalorimetry. J. Biochem. Biophys. Methods 70: 845-849.   DOI   ScienceOn
8 Tsai, F. H., J. C. Lien, L. W. Lin, H. Y. Chen, H. Ching, and C. R. Wu. 2009. Protective effect of Broussonetia papyrifera against hydrogen peroxide-induced oxidative stress in SH-SY5Y cells. Biosci. Biotechnol. Biochem. 73: 1933-1939.   DOI   ScienceOn
9 Wong, K. S. and W. K. Tsang. 2009. In vitro antifungal activity of the aqueous extract of Scutellaria baicalensis Georgi root against Candida albicans. Int. J. Antimicrob. Agents 34: 284- 285.   DOI   ScienceOn
10 Woo, S. S., Y. K. Park, C. H. Choi, K. S. Hahm, and D. G. Lee. 2007. Mode of antibacterial action of a signal peptide, Pep27 from Streptococcus pneumoniae. Biochem. Biophys. Res. Commun. 363: 806-810.   DOI   ScienceOn
11 Kwak, W. J., T. C. Moon, C. X. Lin, H. G. Rhyn, H. Jung, E. Lee, et al. 2003. Papyriflavonol A from Broussonetia papyrifera inhibits the passive cutaneous anaphylaxis reaction and has a secretory phospholipase A2-inhibitory activity. Biol. Pharm. Bull. 26: 299-302.   DOI   ScienceOn
12 Mei, R. Q., Y. H. Wang, G. H. Du, G. M. Liu, L. Zhang, and Y. X. Cheng. 2009. Antioxidant lignans from the fruits of Broussonetia papyrifera. J. Nat. Prod. 72: 621-625.   DOI   ScienceOn
13 Lee, D. G., Y. Park, I. P. Kim, H. G. Jeong, E. R. Woo, and K. S. Hahm. 2002. Influence on the plasma membrane of Candida albicans by HP (2-9)-magainin 2 (1-12) hybrid peptide. Biochem. Biophys. Res. Comm. 297: 885-889.   DOI   ScienceOn
14 Lee, N. K., K. H. Son, H. W. Chang, S. S. Kang, H. Park, M. Y. Heo, and H. P. Kim. 2004. Prenylated flavonoids as tyrosinase inhibitors. Arch. Pharm. Res. 27: 1132-1135.   과학기술학회마을   DOI   ScienceOn
15 Lin, L. W., H. Y. Chen, C. R. Wu, P. M. Liao,Y. T. Lin, M. T. Hsieh, and H. Ching. 2008. Comparison with various parts of Broussonetia papyrifera as to the antinociceptive and antiinflammatory activities in rodents. Biosci. Biotechnol. Biochem. 72: 2377-2384.   DOI   ScienceOn
16 Pei, R. S., F. Zhou, B. P. Ji, and J. Xu. 2009. Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. J. Food Sci. 74: M379-M383.   DOI   ScienceOn
17 Perry, L. M. and J. Metzger. 1980. Medicinal Plants of East and Southeast Asia: Attributed Properties and Uses MIT Press.
18 Pinto, E., L. Vale-Silva, C. Cavaleiro, and L. Salgueiro. 2009. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 58: 1454-1462.   DOI   ScienceOn
19 Chami, F., N. Chami, S. Bennis, T. Bouchikhi, and A. Remmai. 2005. Oregano and clove essential oils induce surface alteration of Saccharomyces cerevisiae. Phytother. Res. 19: 405-408.   DOI   ScienceOn
20 Chen, R. M., L. H. Hu, T. Y. An, J. Li, and Q. Shen. 2002. Natural PTP1B inhibitors from Broussonetia papyrifera. Bioorg. Med. Chem. Lett. 12: 3387-3390.   DOI   ScienceOn
21 Chi, Y. S., H. G. Jong, K. H. Son, H. W. Chang, S. S. Kang, and H. P. Kim. 2001. Effects of naturally occurring prenylated flavonoids on enzymes metabolizing arachidonic acid: Cyclooxygenases and lipoxygenases. Biochem. Pharmacol. 62: 1185-1191.   DOI   ScienceOn
22 Fernandes, A. R., F. M. Prieto, and I. Sa-Correia. 2000. Modification of plasma membrane lipid order and H+-ATPase activity as part of the response of Saccharomyces cerevisiae to cultivation under mild and high copper stress. Arch. Microbiol. 173: 262-268.   DOI   ScienceOn
23 Grayer, R. J. and J. B. Harborne. 1994. Survey of antifungal compounds from higher plants. Phytochemistry 37: 19-42.   DOI   ScienceOn
24 Hwang, J. H. and B. M. Lee. 2007. Inhibitory effects of plant extracts on tyrosinase, L-DOPA oxidation, and melanin synthesis. J. Toxicol. Environ. Health A 70: 393-407.   DOI   ScienceOn
25 Iida, Y., H. Yonemura, K. B. Oh, M. Saito, and H. Matsuoka. 1999. Sensitive screening of antifungal compounds from acetone extracts of medicinal plants with a Bio-Cell Tracer. Yakugaku Zasshi 119: 964-971.   DOI
26 Jones, R. N. and A. L. Barry. 1987. The antimicrobial activity of A-56268 (TE-031) and roxithromycin (RU965) against Legionella using broth microdilution method. J. Antimicrob. Chemother. 19: 841-842.   DOI
27 Ko, H. H., W. L. Chang, and T. M. Lu. 2008. Antityrosinase and antioxidant effects of ent-kaurane diterpenes from leaves of Broussonetia papyrifera. J. Nat. Prod. 71: 1930-1933.   DOI   ScienceOn
28 Bennis, S., F. Chami, N. Chami, T. Bouchikhi, and A. Remmai. 2004. Surface alteration of Saccharomyces cerevisiae induced by thymol and eugenol. Lett. Appl. Microbiol. 38: 454-458.   DOI   ScienceOn