DOI QR코드

DOI QR Code

Change of Bacillus cereus Flavonoid O-Triglucosyltransferase Into Flavonoid O-Monoglucosyltransferase by Error-Prone Polymerase Chain Reaction

  • Jung, Na-Ri (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Joe, Eun-Ji (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Bong-Gyu (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Ahn, Byoung-Chan (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Park, Jun-Cheol (National Institute of Animal Science, Rural Development Administration) ;
  • Chong, You-Hoon (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Ahn, Joong-Hoon (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2010.03.02
  • Accepted : 2010.06.23
  • Published : 2010.10.28

Abstract

The attachment of sugar to flavonoids enhances their solubility. Glycosylation is performed primarily by uridine diphosphate-dependent glycosyltransferases (UGTs). The UGT from Bacillus cereus, BcGT-1, transferred three glucose molecules into kaempferol. The structural analysis of BcGT-1 showed that its substrate binding site is wider than that of plant flavonoid monoglucosyltransferases. In order to create monoglucosyltransferase from BcGT-1, the error-prone polymerase chain reaction (PCR) was performed. We analyzed 150 clones. Among them, two mutants generated only kaempferol O-monoglucoside, albeit with reduced reactivity. Unexpectedly, the two mutants harbored mutations in the amino acids located outside of the active sites. Based on the modeled structure of BcGT-1, it was proposed that the local change in the secondary structure of BcGT-1 caused the alteration of triglucosyltransferase into monoglucosyltransferase.

Keywords

References

  1. Bolam, D. N., S. Roberts, M. R. Proctor, J. P. Turkenburg, E. J. Dodson, C. Martinez-Fleites, et al. 2007. The crystal structure of two macrolide glycosyltransferases provides a blueprint for host cell antibiotic immunity. Proc. Natl. Acad. Sci. U.S.A. 104: 5336-5341. https://doi.org/10.1073/pnas.0607897104
  2. Bowles, D., E. K. Lim, B. Poppenberger, and F. E. Vaistij. 2006. Glycosyltransferases of lipophilic small molecules. Annu. Rev. Plant Biol. 57: 567-597. https://doi.org/10.1146/annurev.arplant.57.032905.105429
  3. Brazier-Hicks, M., W. A. Offen, M. C. Gershater, T. J. Revett, E. K. Lim, D. J. Bowles, G. J. Davies, and R. Edwards. 2007. Characterization and engineering of the bifunctional N- and Oglucosyltransferase involved in xenobiotic metabolism in plants. Proc. Natl. Acad. Sci. U.S.A. 104: 20238-20243. https://doi.org/10.1073/pnas.0706421104
  4. Breton, C., L. Snajdova, C. Jeanneau, J. Koca, and A. Imberty. 2006. Structures and mechanisms of glycosyltransferases. Glycobiology 16: 29R-37R. https://doi.org/10.1093/glycob/cwj016
  5. Campbell, J. A., G. J. Davies, V. Bulone, and B. Henrissat. 1997. A classification of nucleotide-diphosphosugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 326: 929-939. https://doi.org/10.1042/bj3260929u
  6. Gachon, C. M., M. Langlois-Meurinne, and P. Saindrenan. 2005. Plant secondary metabolism glycosyltransferases: The emerging functional analysis. Trends Plant Sci. 10: 542-549. https://doi.org/10.1016/j.tplants.2005.09.007
  7. Hindie, V., A. Stroba, H. Zhang, L. A. Lopez-Garcia, L. Idrissova, S. Zeuzem, et al. 2009. Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1. Nature Chem. Biol. 5: 758-764. https://doi.org/10.1038/nchembio.208
  8. Jeon, Y. M., B. G. Kim, J. H. Kim, Y. Cheong, and J.-H. Ahn. 2009. Enzymatic glycosylation of phenolic compounds using BsGT-3 based on molecular docking simulation. J. Korean Soc. Appl. Biol. Chem. 52: 98-101. https://doi.org/10.3839/jksabc.2009.018
  9. Jones, P. and T. Vogt. 2001. Glycosyltransferases in secondary plant metabolism: Tranquilizers and stimulant controllers. Planta 213: 164-174. https://doi.org/10.1007/s004250000492
  10. Ko, J. H., B. G. Kim, and J.-H. Ahn. 2006. Glycosylation of flavonoids with a glycosyltransferase from Bacillus cereus. FEMS Microbiol. Lett. 258: 263-268. https://doi.org/10.1111/j.1574-6968.2006.00226.x
  11. Liang, D. and J. Qiao. 2007. Phylogenetic analysis of antibiotic glycosyltransferases. J. Mol. Evol. 64: 342-353. https://doi.org/10.1007/s00239-006-0110-2
  12. Mulichak, A. M., H. C. Losey, W. Lu, Z. Wawrzak, C. T. Walsh, and R. M. Garavito. 2003. Structure of the TDP-epivancosaminyltransferase GtfA from the chloroeremomycin biosynthetic pathway. Proc. Natl. Acad. Sci. U.S.A. 100: 9238- 9243. https://doi.org/10.1073/pnas.1233577100
  13. Mulichak, A. M., H. C. Losey, C. T. Walsh, and R. M. Garavito. 2001. Structure of the UDP-glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics. Structure 9: 547-557. https://doi.org/10.1016/S0969-2126(01)00616-5
  14. Noguchi, A., A. Saito, Y. Homma, M. Nakao, N. Sasaki, T. Nishino, S. Takahashi, and T. Nakayama. 2007. A UDPglucose: isoflavone 7-O-glucosyltransferase from the roots of soybean (Glycine max) seedlings - purification, gene cloning, phylogenetics, and an implication for an alternative strategy of enzyme catalysis. J. Biol. Chem. 282: 23581-23590. https://doi.org/10.1074/jbc.M702651200
  15. Osmani, S. A., S. Bak, and B. L. Moller. 2009. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structure and homology modeling. Phytochemistry 70: 325-347. https://doi.org/10.1016/j.phytochem.2008.12.009
  16. Shao, H., X. He, L. Achnine, J. W. Blount, R. A. Dixon, and X. Wang. 2005. Crystal structures of a multifunctional triterpene/ flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 17: 3141-3154. https://doi.org/10.1105/tpc.105.035055

Cited by

  1. Purification, crystallization and preliminary X‐ray crystallographic analysis of glycosyltransferase‐1 from Bacillus cereus vol.70, pp.9, 2010, https://doi.org/10.1107/s2053230x14014629
  2. Sec Pathway Influences the Growth of Deinococcus radiodurans vol.70, pp.5, 2010, https://doi.org/10.1007/s00284-014-0767-5
  3. Recent developments in the enzymatic O-glycosylation of flavonoids vol.100, pp.10, 2010, https://doi.org/10.1007/s00253-016-7465-0
  4. Three important amino acids control the regioselectivity of flavonoid glucosidation in glycosyltransferase-1 from Bacillus cereus vol.100, pp.19, 2010, https://doi.org/10.1007/s00253-016-7536-2
  5. Selective β-Mono-Glycosylation of a C15-Hydroxylated Metabolite of the Agricultural Herbicide Cinmethylin Using Leloir Glycosyltransferases vol.69, pp.19, 2021, https://doi.org/10.1021/acs.jafc.1c01321
  6. Catalytic flexibility of rice glycosyltransferase OsUGT91C1 for the production of palatable steviol glycosides vol.12, pp.1, 2010, https://doi.org/10.1038/s41467-021-27144-4