SOLVABILITY FOR SECOND-ORDER BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS ON AN UNBOUNDED DOMAIN AT RESONANCE

  • Yang, Ai-Jun (COLLEGE OF SCIENCE, ZHEJIANG UNIVERSITY OF TECHNOLOGY) ;
  • Wang, Lisheng (SCHOOL OF MATHEMATICS AND PHYSICS, JINGGANGSHAN UNIVERSITY) ;
  • Ge, Weigao (DEPARTMENT OF APPLIED MATHEMATICS, BEIJING INSTITUTE OF TECHNOLOGY)
  • Published : 2010.02.28

Abstract

This paper deals with the second-order differential equation (p(t)x'(t))' + g(t)f(t, x(t), x'(t)) = 0, a.e. in (0, $\infty$) with the boundary conditions $$x(0)={\int}^{\infty}_0g(s)x(s)ds,\;{lim}\limits_{t{\rightarrow}{\infty}}p(t)x'(t)=0,$$ where $g\;{\in}\;L^1[0,{\infty})$ with g(t) > 0 on [0, $\infty$) and ${\int}^{\infty}_0g(s)ds\;=\;1$, f is a g-Carath$\acute{e}$odory function. By applying the coincidence degree theory, the existence of at least one solution is obtained.

Keywords

References

  1. R. P. Agarwal & D. O'Regan: Infinite interval problems for differential, diflerence and integral equations. Kluwer Academic, 2001.
  2. J. Mawhin: Topological degree methods in nonlinear boundary value problems. in: NS-FCBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, 1979.
  3. W. Ge: Boundary value problems for ordinary nonlinear differential equations. Science Press, Beijing, 2007 (in Chinese).
  4. J.V. Baxley: Existence and uniqueness for nonlinear boundary value problems on infinite interval. J. Math. Anal. Appl. 147 (1990), 127-133.
  5. S. Chen & Y. Zhang: Singular boundary value problems on a half-line. J. Math. Anal. Appl. 195 (1995), 449-468. https://doi.org/10.1006/jmaa.1995.1367
  6. B. Yan: Boundary value problems on the half-line with impulse and infinite delay. J. Math. Anal. Appl. 259 (2001), 94-114. https://doi.org/10.1006/jmaa.2000.7392
  7. D. Jiang & R.P. Agarwal: A uniqueness and existence theorem for a singular thirdorder boundary value probIem on (0, $\infty$). Appl. Math. Lett. 15 (2002), 445-451. https://doi.org/10.1016/S0893-9659(01)00157-4
  8. R. Ma: Existence of positive solution for second-order boundary value problems on infinite intervals. Appl. Math. Lett. 16 (2003), 33-39. https://doi.org/10.1016/S0893-9659(02)00141-6
  9. N. Kosmatov: Multi-point boundary value problems on an unbounded domain at resonance. Nonlinear Anal. 68 (2008), 2158-2171. https://doi.org/10.1016/j.na.2007.01.038
  10. H. Lian, H. Pang & W. Ge: Solvability for second-order three-point boundary value problems at resonance on a half-line. J. Math. Anal. Appl. 337 (2008), 1171-1181. https://doi.org/10.1016/j.jmaa.2007.04.038
  11. A. Yang, C. Miao & W. Ge: Solvability for second-order nonlocal boundary value problems with a p-Laplacian at resonance on a half-line. Elec. J. Qual. Theo. Diff. Equa. 15 (2009), 1-15.
  12. A. Yang & W. Ge: Existence of symmetric solutions for a fourth-order multi-point boundary value problem with a p-Laplacian at resonance. J. Appl. Math. Comput. 29 (2009), no. 1, 301-309. https://doi.org/10.1007/s12190-008-0131-7
  13. A. Yang & W. Ge: Positive solutions of multi-point boundary value problems with multivalued operators at resonance. J. Appl. Math. Comput. On line: 10.1007/s12190-008-0217-2.