DOI QR코드

DOI QR Code

THE EFFECT OF THE AMOUNT OF INTERDENTAL SPACING ON THE STRESS DISTRIBUTION IN MAXILLARY CENTRAL INCISORS RESTORED WITH PORCELAIN LAMINATE VENEER AND COMPOSITE RESIN: A 3D-FINITE ELEMENT ANALYSIS

도재 라미네이트와 복합레진 수복 시 치간이개 양에 따른 접착계면의 응력분포에 관한 3차원 유한요소법적 연구

  • Hong, Jun-Bae (Department of Conservative Dentistry, School of Dentistry, Seoul National University) ;
  • Tak, Seung-Min (Mechanical Aerospace Engineering, Gyeongsang National University) ;
  • Baek, Seung-Ho (Department of Conservative Dentistry, School of Dentistry, Seoul National University) ;
  • Cho, Byeong-Hoon (Department of Conservative Dentistry, School of Dentistry, Seoul National University)
  • 홍준배 (서울대학교 치의학대학원 치과보존학교실) ;
  • 탁승민 (경상대학교 공과대학 기계항공학과) ;
  • 백승호 (서울대학교 치의학대학원 치과보존학교실) ;
  • 조병훈 (서울대학교 치의학대학원 치과보존학교실)
  • Published : 2010.01.29

Abstract

This study evaluated the influence of the type of restoration and the amount of interdental spacing on the stress distribution in maxillary central incisors restored by means of porcelain laminate veneers and direct composite resin restorations. Three-dimensional finite element models were fabricated to represent different types of restorations. Four clinical situations were considered. Type I, closing diastema using composite resin. Labial border of composite resin was extended just enough to cover the interdental space; Type II, closing diastema using composite resin without reduction of labial surface. Labial border of composite resin was extended distally to cover the half of the total labial surface; Type III, closing diastema using composite resin with reduction of labial surface. Labial border of the preparation and restored composite resin was extended distally two-thirds of the total labial surface; Type IV, closing diastema using porcelain laminate veneer with a feathered-edge preparation technique. Four different interdental spaces (1.0, 2.0. 3.0, 4.0 mm) were applied for each type of restorations. For all types of restoration, adding the width of free extension of the porcelain laminate veneer and composite resin increased the stress occurred at the bonding layer. The maximum stress values observed at the bonding layer of Type IV were higher than that of Type I, II and III. However, the increasing rate of maximum stress value of Type IV was lower than that of Type I, II and III.

본 연구에서는, 삼차원 유한요소분석법을 이용하여 복합레진 및 도재 라미네이트로 전치부 치간이개를 폐쇄할 때, 치간이개의 간격과 수복방법이 수복물의 접착계면에서의 응력분포에 미치는 영향을 비교하였다. 복합레진 혹은 도재 라미네이트로 수복된 모습의 유한요소모델을 형성하여 접착계면에서의 von Mises stress 분포 양태를 분석하였다. 수복형태는 크게 네 가지 범주를 고려하였다. Type I, 복합레진으로 인접면을 최소한으로 수복하는 경우; Type II, 치아 삭제 없이 복합레진으로 순면의 절반까지 수복하는 경우; Type III, 치아삭제 후복합레진으로 순면의 2/3까지 수복하는 경우; Type IV, 도재 라미네이트로 수복하는 경우 이 실험의 한계 내에서 다음과 같은 결론을 내릴 수 있었다. 모든 수복형태에 대해 치간이개 간격이 넓어질수록 접착계면에서 발생하는 최대응력 값은 증가하였으며, 도재 라미네이트로 치간이개 부위를 수복한 경우(Type IV)가 복합레진으로 수복한 경우(Type I, II, III)에 비해 높은 최대응력값을 나타내었다. 그러나 치간이개 간격이 넓어질수록 도재 라미네이트와 복합레진에서 발생하는 최대응력값의 차리는 감소하였으며, 치간이개 간격의 증가에 따른 최대응력값의 증가율은 도재 라미네이트가 복합레진으로 수복하는 경우보다 낮았다.

Keywords

References

  1. Heymann HO, Hershey HG. Use of composite resin for restorative and orthodontic correction of anterior interdental spacing. J Prosthet Dent 53(6):766-771, 1985. https://doi.org/10.1016/0022-3913(85)90153-2
  2. Lenhard M. Closing diastemas with resin composite restorations. Eur J Esthet Dent 3(3):258-268, 2008.
  3. Pensler AV. Multiple-diastema porcelain laminate veneers: a case study. Compendium 14(11):1470-1478, 1993.
  4. Nash RW. Closing a large central diastema using a pressed ceramic. Dent Today 22(11):62-65, 2003.
  5. Aherne T. Treatment of maxillary anterior diastema using resin-bonded porcelain crown restorations. Pract Proced Aesthet Dent 13(6):443-445, 2001
  6. Tanaka OM, Furquim BD, Pascotto RC, Ribeiro GL, B-sio JA, Maruo H. The dilemma of the open gingival embrasure between maxillary central incisors. J Contemp Dent Pract 9(6):92-98, 2008.
  7. Dumfahrt H, Schaffer H. Porcelain laminate veneers. A retrospective evaluation after 1 to 10 years of service. Part II. Clinical results. Int J Prosthodont 13:9-18, 2000.
  8. Peumans M, De Munck J, Fieuws S, Lambrechts P, Vanherle G, Van Meerbeek B. A prospective ten-year clinical trial of porcelain veneers. J Adhesive Dent 6:65-76, 2004.
  9. Burke FJ, Lucarotti PS. Ten-year outcome of porcelain laminate veneers placed within the general dental services in England and Wales. J Dent 37:31-38, 2009. https://doi.org/10.1016/j.jdent.2008.03.016
  10. Shaini FJ, Shortall AC, Marquis PM. Clinical performance of porcelain laminate veneers. A retrospective evaluation over a period of 6. 5 years. J Oral Rehabil 24:553-559, 1997. https://doi.org/10.1046/j.1365-2842.1997.00545.x
  11. Dunne SM, Millar BJ. A longitudinal study of the clinical performance of porcelain veneers. Br Dent J 175:317-321, 1993. https://doi.org/10.1038/sj.bdj.4808314
  12. Hui KK, Williams B, Davis EH, Holt RD. A comparative assessment on the strengths of porcelain veneers for incisor teeth dependent on their design characteristics. Br Dent J 171:51-55, 1991. https://doi.org/10.1038/sj.bdj.4807602
  13. Highton R, Caputo AA, Matyas J. A photoelastic study of stresses on porcelain laminate preparations. J Prosthet Dent 58:157-161, 1987. https://doi.org/10.1016/0022-3913(87)90168-5
  14. Hahn P, Gustav M, Hellwig E. An in vitro assessment of the strength of porcelain veneers dependent on tooth preparation. J Oral Rehabil 27:1024-1029, 2000. https://doi.org/10.1046/j.1365-2842.2000.00640.x
  15. Morin DL, Douglas WH, Cross M, DeLong R. Biophysical stress analysis of restored teeth: experimental strain measurement. Dent Mater 4:41-48, 1988. https://doi.org/10.1016/S0109-5641(88)80087-3
  16. Karl M, Dickinson A, Holst S, Holst A. Biomechanical methods applied in dentistry: a comparative overview of photoelastic examinations, strain gauge measurements, finite element analysis and three-dimensional deformation analysis. Eur J Prosthodont Restor Dent 17(2):50-57, 2009.
  17. Roeh ES, Ross GK. Tooth stiffness with composite veneers: a strain gauge and finite element evaluation. Dent Mater 10:247-252, 1994. https://doi.org/10.1016/0109-5641(94)90069-8
  18. Morin DL, Cross M, Voller VR, Douglas WH, DeLong R. Biophysical stress analysis of restored teeth: modelling and analysis. Dent Mater 4:77-84, 1988. https://doi.org/10.1016/S0109-5641(88)80095-2
  19. Hutton DV. 정현조 외 공역. 유한요소 해석의 기초(fundamentals of finite element analysis). 도서출판 인터비젼, 2006.
  20. Cattaneo PM, Dalstra M, Melsen B. The finite element method: a tool to study orthodontic tooth movement. J Dent Res 84:428-433, 2005. https://doi.org/10.1177/154405910508400506
  21. Magne P, Belser UC. Rationalization of shape and related stress distribution in posterior teeth: a finite element study using nonlinear contact analysis. Int J Periodont Res Dent 22:425-433, 2002.
  22. Dejak B, Mlotkowski A, Romanowicz M. Finite element analysis of mechanism of cervical lesion formation in simulated molars during mastication and parafunction. J Prosthet Dent 94:520-29, 2005. https://doi.org/10.1016/j.prosdent.2005.10.001
  23. Boccaccio A, Lamberti L, Pappalettere C, Cozzani M, Siciliani G. Comparison of different orthodontic devices for mandibular symphyseal distraction osteogenesis: A finite element study. Am J Orthod Dentofacial Orthop 134:260-269, 2008. https://doi.org/10.1016/j.ajodo.2006.09.066
  24. Ona M, Wakabayashi N. Influence of alveolar support on stress in periodontal structures. J Dent Res 85:1087-1091, 2006. https://doi.org/10.1177/154405910608501204
  25. Versluis A, Tantbirojn D, Douglas WH. Do dental composite always shrink toward the light. J Dent Res 77(6):1435-1445, 1998. https://doi.org/10.1177/00220345980770060801
  26. Chun HJ, Shin HS, Han CH, Lee SH. Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis. Int J Oral Maxillofac Implants 21:195-202, 2006.
  27. H-bsch PF, Middleton J, Knox J. A finite element analysis of the stress at the restoration-tooth interface, comparing inlays and bulk fillings. Biomaterials 21:1015-1019, 2000. https://doi.org/10.1016/S0142-9612(99)00266-5
  28. Magne P, Douglas WH. Design optimization and evolution of bonded ceramics for the anterior dentition: A finite-element analysis. Quintessence Int 30:661-672, 1999.
  29. Zarone F, Apicella D, Sorrentino R, Ferro V, Aversa R, Apicella A. Influence of tooth preparation design on the stress distribution in maxillary central incisors restored by means of alumina porcelain veneers: A 3Dfinite element analysis. Dent Mater 21:1178-1188, 2005. https://doi.org/10.1016/j.dental.2005.02.014
  30. Seymour KG, Cherukara GP, Samarawickrama DY. Stress within porcelain veneers and the composite lute using different preparation designs. J Prosthodont 10:16-21. 2001. https://doi.org/10.1111/j.1532-849X.2001.00016.x
  31. Troedson M, Derand T. Shear stresses in the adhesive layer under porcelain veneers. A finite element method study. Acta Odontol Scand 56:257-262, 1998. https://doi.org/10.1080/000163598428419
  32. Troedson M, Derand T. Effect of margin design, cement polymerization, and angle of loading on stress in porcelain veneers. J Prosthet Dent 82:518-524, 1999. https://doi.org/10.1016/S0022-3913(99)70049-1
  33. Chander NG, Padmanabhan TV. Finite element stress analysis of diastema closure with ceramic laminate veneers. J Prosthodont 18(7):577-581, 2009. https://doi.org/10.1111/j.1532-849X.2009.00490.x
  34. Dejak B, Mlotkowski A. Three-dimensional finite element analysis of strength and adhesion of composite resin versus ceramic inlays in molars. J Prosthet Dent 99(2):131-140, 2008. https://doi.org/10.1016/S0022-3913(08)60029-3
  35. Anusavice K. Phillips' Science of Dental Materials. 10th ed., Philadelphia. Saunders, p590-595, 1996.
  36. Baratieri LN, 신동훈 역. 전치부심미학(Direct adhesive restoration on fractured anterior teeth). 나래출판사, p265-312. 2000.
  37. Baratieri LN. Composite Restorations in Anterior Teeth: Fundamentals and Possibilities. Quintessence books., Sao Paulo, 2005.
  38. Aschheim KW, Dale BG. Esthetic dentistry: a clinical approach to techniques and materials. 2nd ed., Mosby Inc., St. Louis, p151-55, 2001.
  39. Jordan RE, Suzuki M, Senda A. A clinical evaluation of porcelain laminate veneers: a four year recall report. J Esthet Dent 1:126-137, 1989. https://doi.org/10.1111/j.1708-8240.1989.tb00543.x
  40. Graber TM. Normal occlusion. In Orthodontics. principles and practice. 3rd ed., WB Saunders Co., 1972.
  41. Carlsson GE. Bite force and chewing efficiency. Front Oral Physiol 1:265-292, 1974.
  42. Ausiello P, Rengo S, Davidson CL, Watts DC. Stress distributions in adhesively cemented ceramic and resin-composite Class II inlay restorations: a 3D-FEA study. Dent Mater 20:862-872, 2004. https://doi.org/10.1016/j.dental.2004.05.001
  43. Craig RG. Compressive Properties of Enamel, Dental Cements, and Gold. J Dent Res 40:936-945, 1961. https://doi.org/10.1177/00220345610400051901
  44. Craig RG. Restorative dental materials. MO: The C.V. Mosby Co., St. Louis., 1985.
  45. Sano R, Ciucchi B, Matthews WG, Pashley DR. Tensile properties of mineralized and demineralized human and bovine dentin. J Dent Res 73:1205-1211, 1994.
  46. Farah JW, Craig RG, Meroueh KA. Finite element analysis of three-and four-unit bridges. J Oral Rehabil 16:603-611, 1989. https://doi.org/10.1111/j.1365-2842.1989.tb01384.x
  47. Lin CP. Structure-property-function relationships in the dentin-enamel complex and tooth-restoration inter-face(dissertation). Minneapolis, MN: University of Minnesota. 1993.
  48. Magne P, Perakis N, Belser UC, Krejci I. Stress distribution of inlay-anchored adhesive fixed partial dentures: a finite element analysis of influence of restorative materials and abutment preparation design. J Prosthet Dent 87:516-527, 2002. https://doi.org/10.1067/mpr.2002.124367
  49. Rees JS. Elastic modulus of the periodontal ligament. Biomaterials 18:995-999, 1997. https://doi.org/10.1016/S0142-9612(97)00021-5
  50. Albakry M. Biaxial flexural strength, elastic moduli, and x-ray diffraction characterization of three pressable all-ceramic materials. J Prosthet Dent 89:374-380, 2003. https://doi.org/10.1067/mpr.2003.42
  51. Pegoretti A. Finite element analysis of a glass fibre reinforced composite endodontic post. Biomaterials 23:2667-2682, 2002. https://doi.org/10.1016/S0142-9612(01)00407-0
  52. Farah JW, Graig RG. Finite element stress analysis of a restored axisymmetric first molar. J Dent Res 53:859-866, 1974. https://doi.org/10.1177/00220345740530041701