Browse > Article
http://dx.doi.org/10.5395/JKACD.2010.35.1.030

THE EFFECT OF THE AMOUNT OF INTERDENTAL SPACING ON THE STRESS DISTRIBUTION IN MAXILLARY CENTRAL INCISORS RESTORED WITH PORCELAIN LAMINATE VENEER AND COMPOSITE RESIN: A 3D-FINITE ELEMENT ANALYSIS  

Hong, Jun-Bae (Department of Conservative Dentistry, School of Dentistry, Seoul National University)
Tak, Seung-Min (Mechanical Aerospace Engineering, Gyeongsang National University)
Baek, Seung-Ho (Department of Conservative Dentistry, School of Dentistry, Seoul National University)
Cho, Byeong-Hoon (Department of Conservative Dentistry, School of Dentistry, Seoul National University)
Publication Information
Restorative Dentistry and Endodontics / v.35, no.1, 2010 , pp. 30-39 More about this Journal
Abstract
This study evaluated the influence of the type of restoration and the amount of interdental spacing on the stress distribution in maxillary central incisors restored by means of porcelain laminate veneers and direct composite resin restorations. Three-dimensional finite element models were fabricated to represent different types of restorations. Four clinical situations were considered. Type I, closing diastema using composite resin. Labial border of composite resin was extended just enough to cover the interdental space; Type II, closing diastema using composite resin without reduction of labial surface. Labial border of composite resin was extended distally to cover the half of the total labial surface; Type III, closing diastema using composite resin with reduction of labial surface. Labial border of the preparation and restored composite resin was extended distally two-thirds of the total labial surface; Type IV, closing diastema using porcelain laminate veneer with a feathered-edge preparation technique. Four different interdental spaces (1.0, 2.0. 3.0, 4.0 mm) were applied for each type of restorations. For all types of restoration, adding the width of free extension of the porcelain laminate veneer and composite resin increased the stress occurred at the bonding layer. The maximum stress values observed at the bonding layer of Type IV were higher than that of Type I, II and III. However, the increasing rate of maximum stress value of Type IV was lower than that of Type I, II and III.
Keywords
Three dimensional-finite element analysis; Interdental space; Porcelain laminate veneer; Composite resin; Bonding layer; Stress distribution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zarone F, Apicella D, Sorrentino R, Ferro V, Aversa R, Apicella A. Influence of tooth preparation design on the stress distribution in maxillary central incisors restored by means of alumina porcelain veneers: A 3Dfinite element analysis. Dent Mater 21:1178-1188, 2005.   DOI   ScienceOn
2 Seymour KG, Cherukara GP, Samarawickrama DY. Stress within porcelain veneers and the composite lute using different preparation designs. J Prosthodont 10:16-21. 2001.   DOI   ScienceOn
3 Troedson M, Derand T. Shear stresses in the adhesive layer under porcelain veneers. A finite element method study. Acta Odontol Scand 56:257-262, 1998.   DOI
4 Troedson M, Derand T. Effect of margin design, cement polymerization, and angle of loading on stress in porcelain veneers. J Prosthet Dent 82:518-524, 1999.   DOI   ScienceOn
5 Chander NG, Padmanabhan TV. Finite element stress analysis of diastema closure with ceramic laminate veneers. J Prosthodont 18(7):577-581, 2009.   DOI   ScienceOn
6 Dejak B, Mlotkowski A. Three-dimensional finite element analysis of strength and adhesion of composite resin versus ceramic inlays in molars. J Prosthet Dent 99(2):131-140, 2008.   DOI   ScienceOn
7 Anusavice K. Phillips' Science of Dental Materials. 10th ed., Philadelphia. Saunders, p590-595, 1996.
8 Baratieri LN, 신동훈 역. 전치부심미학(Direct adhesive restoration on fractured anterior teeth). 나래출판사, p265-312. 2000.
9 Roeh ES, Ross GK. Tooth stiffness with composite veneers: a strain gauge and finite element evaluation. Dent Mater 10:247-252, 1994.   DOI   ScienceOn
10 Morin DL, Cross M, Voller VR, Douglas WH, DeLong R. Biophysical stress analysis of restored teeth: modelling and analysis. Dent Mater 4:77-84, 1988.   DOI   ScienceOn
11 Hutton DV. 정현조 외 공역. 유한요소 해석의 기초(fundamentals of finite element analysis). 도서출판 인터비젼, 2006.
12 Cattaneo PM, Dalstra M, Melsen B. The finite element method: a tool to study orthodontic tooth movement. J Dent Res 84:428-433, 2005.   DOI   ScienceOn
13 Magne P, Belser UC. Rationalization of shape and related stress distribution in posterior teeth: a finite element study using nonlinear contact analysis. Int J Periodont Res Dent 22:425-433, 2002.
14 Dejak B, Mlotkowski A, Romanowicz M. Finite element analysis of mechanism of cervical lesion formation in simulated molars during mastication and parafunction. J Prosthet Dent 94:520-29, 2005.   DOI   ScienceOn
15 Boccaccio A, Lamberti L, Pappalettere C, Cozzani M, Siciliani G. Comparison of different orthodontic devices for mandibular symphyseal distraction osteogenesis: A finite element study. Am J Orthod Dentofacial Orthop 134:260-269, 2008.   DOI   ScienceOn
16 Ona M, Wakabayashi N. Influence of alveolar support on stress in periodontal structures. J Dent Res 85:1087-1091, 2006.   DOI   ScienceOn
17 Versluis A, Tantbirojn D, Douglas WH. Do dental composite always shrink toward the light. J Dent Res 77(6):1435-1445, 1998.   DOI   ScienceOn
18 Chun HJ, Shin HS, Han CH, Lee SH. Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis. Int J Oral Maxillofac Implants 21:195-202, 2006.
19 Dumfahrt H, Schaffer H. Porcelain laminate veneers. A retrospective evaluation after 1 to 10 years of service. Part II. Clinical results. Int J Prosthodont 13:9-18, 2000.
20 Peumans M, De Munck J, Fieuws S, Lambrechts P, Vanherle G, Van Meerbeek B. A prospective ten-year clinical trial of porcelain veneers. J Adhesive Dent 6:65-76, 2004.
21 Burke FJ, Lucarotti PS. Ten-year outcome of porcelain laminate veneers placed within the general dental services in England and Wales. J Dent 37:31-38, 2009.   DOI   ScienceOn
22 Shaini FJ, Shortall AC, Marquis PM. Clinical performance of porcelain laminate veneers. A retrospective evaluation over a period of 6. 5 years. J Oral Rehabil 24:553-559, 1997.   DOI   ScienceOn
23 Dunne SM, Millar BJ. A longitudinal study of the clinical performance of porcelain veneers. Br Dent J 175:317-321, 1993.   DOI   ScienceOn
24 Hui KK, Williams B, Davis EH, Holt RD. A comparative assessment on the strengths of porcelain veneers for incisor teeth dependent on their design characteristics. Br Dent J 171:51-55, 1991.   DOI   ScienceOn
25 Highton R, Caputo AA, Matyas J. A photoelastic study of stresses on porcelain laminate preparations. J Prosthet Dent 58:157-161, 1987.   DOI   ScienceOn
26 Hahn P, Gustav M, Hellwig E. An in vitro assessment of the strength of porcelain veneers dependent on tooth preparation. J Oral Rehabil 27:1024-1029, 2000.   DOI   ScienceOn
27 Morin DL, Douglas WH, Cross M, DeLong R. Biophysical stress analysis of restored teeth: experimental strain measurement. Dent Mater 4:41-48, 1988.   DOI   ScienceOn
28 Karl M, Dickinson A, Holst S, Holst A. Biomechanical methods applied in dentistry: a comparative overview of photoelastic examinations, strain gauge measurements, finite element analysis and three-dimensional deformation analysis. Eur J Prosthodont Restor Dent 17(2):50-57, 2009.
29 Heymann HO, Hershey HG. Use of composite resin for restorative and orthodontic correction of anterior interdental spacing. J Prosthet Dent 53(6):766-771, 1985.   DOI   ScienceOn
30 Lenhard M. Closing diastemas with resin composite restorations. Eur J Esthet Dent 3(3):258-268, 2008.
31 Pensler AV. Multiple-diastema porcelain laminate veneers: a case study. Compendium 14(11):1470-1478, 1993.
32 Nash RW. Closing a large central diastema using a pressed ceramic. Dent Today 22(11):62-65, 2003.
33 Aherne T. Treatment of maxillary anterior diastema using resin-bonded porcelain crown restorations. Pract Proced Aesthet Dent 13(6):443-445, 2001
34 Tanaka OM, Furquim BD, Pascotto RC, Ribeiro GL, B-sio JA, Maruo H. The dilemma of the open gingival embrasure between maxillary central incisors. J Contemp Dent Pract 9(6):92-98, 2008.
35 Ausiello P, Rengo S, Davidson CL, Watts DC. Stress distributions in adhesively cemented ceramic and resin-composite Class II inlay restorations: a 3D-FEA study. Dent Mater 20:862-872, 2004.   DOI   ScienceOn
36 Baratieri LN. Composite Restorations in Anterior Teeth: Fundamentals and Possibilities. Quintessence books., Sao Paulo, 2005.
37 Aschheim KW, Dale BG. Esthetic dentistry: a clinical approach to techniques and materials. 2nd ed., Mosby Inc., St. Louis, p151-55, 2001.
38 Jordan RE, Suzuki M, Senda A. A clinical evaluation of porcelain laminate veneers: a four year recall report. J Esthet Dent 1:126-137, 1989.   DOI
39 Graber TM. Normal occlusion. In Orthodontics. principles and practice. 3rd ed., WB Saunders Co., 1972.
40 Carlsson GE. Bite force and chewing efficiency. Front Oral Physiol 1:265-292, 1974.
41 Craig RG. Compressive Properties of Enamel, Dental Cements, and Gold. J Dent Res 40:936-945, 1961.   DOI
42 Craig RG. Restorative dental materials. MO: The C.V. Mosby Co., St. Louis., 1985.
43 Sano R, Ciucchi B, Matthews WG, Pashley DR. Tensile properties of mineralized and demineralized human and bovine dentin. J Dent Res 73:1205-1211, 1994.
44 Farah JW, Craig RG, Meroueh KA. Finite element analysis of three-and four-unit bridges. J Oral Rehabil 16:603-611, 1989.   DOI
45 Lin CP. Structure-property-function relationships in the dentin-enamel complex and tooth-restoration inter-face(dissertation). Minneapolis, MN: University of Minnesota. 1993.
46 Magne P, Perakis N, Belser UC, Krejci I. Stress distribution of inlay-anchored adhesive fixed partial dentures: a finite element analysis of influence of restorative materials and abutment preparation design. J Prosthet Dent 87:516-527, 2002.   DOI   ScienceOn
47 H-bsch PF, Middleton J, Knox J. A finite element analysis of the stress at the restoration-tooth interface, comparing inlays and bulk fillings. Biomaterials 21:1015-1019, 2000.   DOI   ScienceOn
48 Magne P, Douglas WH. Design optimization and evolution of bonded ceramics for the anterior dentition: A finite-element analysis. Quintessence Int 30:661-672, 1999.
49 Albakry M. Biaxial flexural strength, elastic moduli, and x-ray diffraction characterization of three pressable all-ceramic materials. J Prosthet Dent 89:374-380, 2003.   DOI   ScienceOn
50 Rees JS. Elastic modulus of the periodontal ligament. Biomaterials 18:995-999, 1997.   DOI   ScienceOn
51 Pegoretti A. Finite element analysis of a glass fibre reinforced composite endodontic post. Biomaterials 23:2667-2682, 2002.   DOI   ScienceOn
52 Farah JW, Graig RG. Finite element stress analysis of a restored axisymmetric first molar. J Dent Res 53:859-866, 1974.   DOI   ScienceOn