Trace Element Compositions and Optically Stimulated Luminescence Characteristics of Sedimentary Quartz

퇴적물 내 석영의 광여기 루미네선스 특성과 미량원소 조성

  • Jeon, Gi-Young (Department of Earth and Environmental Sciences, Andong National University) ;
  • Choi, Jeong-Heon (Division of Earth and Environmental Sciences, Ochang Center, Korea Basic Science Institute) ;
  • Kil, Young-Woo (Korea Institute of Geoscience and Mineral Resources)
  • 정기영 (안동대학교 지구환경과학과) ;
  • 최정헌 (한국기초과학지원연구원 오창센터 환경과학연구부) ;
  • 길영우 (한국지질자원연구원)
  • Received : 2010.12.01
  • Accepted : 2010.12.21
  • Published : 2010.12.30

Abstract

Optically stimulated luminescence (OSL) of quartz is commonly applied to the age dating of Quaternary sediments. However, one of the issues is that some of the quartz samples are not suitable to OSL dating. Mineralogical analysis of the quartz samples with diverse OSL signals are required to strengthen the reliability and applicability of the OSL dating. We analysed the OSL signal characteristics of sedimentary quartz samples from diverse geological environments and measured their trace element contents using laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Quartz samples could be grouped into ones suitable to OSL dating and ones unsuitable on the basis of their OSL signal characteristics. The average trace element contents ranged from 73 to 260 ppm (Al), and from 61 to 248 ppm (Ti) with minor Li, Mg, Cr, Mn, and Fe contents below 40 ppm. We did not find any significant variation of trace element contents of quartz samples consistent with their OSL signal characteristics. This indicates unknown mineralogical factors causing diverse OSL characteristics which should be confirmed by further analysis of sufficient set of samples.

석영의 광여기 루미네선스(OSL)를 이용한 제4기 퇴적물의 연대측정이 최근 널리 적용되고 있다. 그러나 모든 석영시료가 OSL 연대측정에 적합하지는 않다는 사실도 잘 알려져 있다. OSL 연대측정의 신뢰도를 향상시키고 적용범위를 넓히기 위해서는 석영시료별로 다양한 OSL 신호 특성의 원인에 대한 광물학적 규명이 필요하다. 본 연구는 그러한 광물학적 연구의 일환으로 전혀 다른 지질 및 지표 환경에서 채취한 퇴적물 시료로부터 분리한 석영을 대상으로 OSL 신호특성 분석과 레이저삭마 유도결합플라즈마질량분석(LA-ICP-MS)을 이용한 미량원소 조성분석을 실시하였다. OSL 신호분석 결과, 석영시료는 연대 측정에 적합한 신호특성을 갖는 시료와 부적합한 시료로 명확히 분리할 수 있었다. 미량원소조성분석 결과, Al (평균 73~267 ppm)과 Ti (평균 61~248 ppm)의 함량이 가장 높았으며, 그 외 Li, Mg, Cr, Mn, Fe 등이 40 ppm 미만으로 함유되어 있었다. 석영 시료간 OSL 특성의 명확한 차이에도 불구하고, 그에 상응하는 미량원소함량의 뚜렷한 차이는 발견할 수 없었다. 이는 시료별로 다양한 OSL 신호 특성이 미량원소가 아닌 석영의 다른 광물학적 원인에 기인되었을 가능성을 시사하지만, 향후 보다 많은 시료 분석으로 확인되어야 한다.

Keywords

References

  1. 최정헌, 임현수, 윤호일, 정창식, 임창복, 김종욱, 장호완 (2008) 남극 킹조지섬에 분포하는 원형구조토(Sorted Circles)에 대한 OSL 연대측정 적용가능성 연구. 지질학회지, 44, 523-539.
  2. Aitken, M.J. (1985) Thermoluminescence Dating. Academic Press.
  3. Aitken, M.J. (1998) An Introduction to Optical Dating. Oxford University Press, Oxford.
  4. Bailey, R.M., Smith, B.W., and Rhodes, E.J. (1997) Partial bleaching and the decay form characteristics of quartz OSL. Radiat. Meas., 27, 123-136. https://doi.org/10.1016/S1350-4487(96)00157-6
  5. Choi, J.H., Murray, A.S., Jain, M., Cheong, C.S., and Chang, H.W. (2003a) Luminescence dating of wellsorted marine terrace sediments on the southeastern coast of Korea. Quat. Sci. Rev., 22, 407-421. https://doi.org/10.1016/S0277-3791(02)00136-1
  6. Choi, J.H., Murray, A.S., Cheong, C.S., Hong, D.G., and Chang, H.W. (2003b) The resolution of stratigraphic inconsistency in the luminescence ages of marine terrace sediments from Korea. Quat. Sci. Rev., 22, 1201-1206. https://doi.org/10.1016/S0277-3791(03)00022-2
  7. Choi, J.H., Duller, G.A.T., Wintle, A.G., Cheong, C.-S. (2006a) Luminescence characteristics of quartz from the Southen Kenyan Rift Valley: Dose estimation using LM-OSL SAR. Radiation Measurements, 41, 847-854. https://doi.org/10.1016/j.radmeas.2006.05.003
  8. Choi, J.H., Duller, G.A.T., and Wintle, A.G. (2006b) Analysis of quartz LM-OSL curves. Ancient TL, 24, 9-20.
  9. Choi, J.H., Murray, A.S., Cheong, C.S., Hong, D.G., and Chang, H.W. (2006c) Estimation of equivalent dose using quartz isothermal TL and the SAR procedure. Quat. Geochronol., 1, 101-108. https://doi.org/10.1016/j.quageo.2006.05.010
  10. Demuro, M., Roberts, R.G., Froese, D.G., Arnold, L.J., Brock, F., and Bronk Ramsey, C. (2008) Optically stimulated luminescence dating of single and multiple grains of quartz from perennially frozen loess in western Yukon Territory, Canada: Comparison with radiocarbon chronologies for the late Pleistocene Dawson tephra. Quat. Geochronol., 3, 346-364. https://doi.org/10.1016/j.quageo.2007.12.003
  11. Duller, G.A.T. (2004) Luminescence dating of Quaternary sediments: recent advances. Journal of Quaternary Sciences, 19, 183-192. https://doi.org/10.1002/jqs.809
  12. Duller, G.A.T and Augustinus, P.C. (2006) Reassessment of the record of linear dune activity in Tasmania using optical dating. Quaternary Science Reviews, 25, 2608- 2618. https://doi.org/10.1016/j.quascirev.2005.05.010
  13. Fan, A., Li, S.H., and Li, B. Observation of unstable fast component in OSL of quartz. Radia. Meas. in press.
  14. Fattahi, M. and Stokes, S. (2005) Dating unheated quartz using a single aliquot regeneration-dose red thermoluminescence (SAR RTL). Journal of Luminescence, 115, 19-31. https://doi.org/10.1016/j.jlumin.2005.01.012
  15. Flem, B., Larsen, R.B., Grimstvedt, A., and Mansfeld, J. (2002) In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chemical Geology, 182, 237-247. https://doi.org/10.1016/S0009-2541(01)00292-3
  16. Goetze, J., Plotze, M., and Habermann, D. (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz: a review. Mineralogy and Petrology, 71, 225-250. https://doi.org/10.1007/s007100170040
  17. Huntley, D.J., Godfrey-Smith, D.I., and Thewalt, M.L.W. (1985) Optical dating of sediments. Nature, 313, 105-107. https://doi.org/10.1038/313105a0
  18. McKeever, S.W.S. (1985) Thermoluminescence of Solids. Cambridge University Press.
  19. Muller, A., Wiedenbeck, M., Van den Kerkhof, A.M., Kronz, A., and Simon, K. (2003) Trace elements in quartz-A combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICPMS, and cathodoluminescence study. Eur. J. Miner., 15, 747-763. https://doi.org/10.1127/0935-1221/2003/0015-0747
  20. Murray, A.S. and Olley, J.M. (2002) Precision and accuracy in the optically stimulated luminescence dating of sedimantary quartz: a status review. Geochronometria, 21, 1-16.
  21. Murray, A.S. and Wintle, A.G. (2000) Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas., 32, 57-73. https://doi.org/10.1016/S1350-4487(99)00253-X
  22. Murray, A.S. and Wintle, A.G. (2003) The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiat. Meas., 37, 377-381. https://doi.org/10.1016/S1350-4487(03)00053-2
  23. Perny, B., Eberhardt, P., Ramseyer, K., Mullis, J., and Pankrath, R. (1992) Microdistribution of Al, Li, and Na in $\alpha$-quartz: Possible causes and correlation with short-lived cathodoluminescence. American Mineralogist, 77, 534-544.
  24. Rusk, B.G., Reed, M.H., Dilles, J.H., and Kent, A.J.R. (2006) Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana. American Mineralogist, 91, 1300-1312. https://doi.org/10.2138/am.2006.1984
  25. Rodnight, H. (2008) How many equivalent dose values are needed to obtain a reproducible distribution? Ancient TL, 26, 3-9.
  26. Singarayer, J.S. and Bailey, R.M. (2003) Further investigations of the quartz optically stimulated luminescence components using linear modulation. Radiat. Meas., 37, 451-458. https://doi.org/10.1016/S1350-4487(03)00062-3
  27. Steffen, D., Preusser, F., and Schlunegger, F. (2009) OSL quartz age underestimation due to unstable signal components. Quat. Geochronol., 4, 353-362. https://doi.org/10.1016/j.quageo.2009.05.015
  28. Tsukamoto, S., Duller, G.A.T., Murray, A.S., and Choi, J.H. (Eds.) (2009) "Luminescence Dating in Geomorphology" special issue in Geomorphology, vol. 109.
  29. Tsukamoto, S., Duller, G.A.T., Murray, A.S., and Choi, J.H. (Eds.) (2009) "Luminescence: Analysis of Quaternary Tectonic Movements and Environmental Change" Special issue in Quaternary International, vol. 199.
  30. Wagner, M.J. (1998) Age Determination of Young Rocks and Artifacts. Springer, Berlin.
  31. Wang, X.L., Lu, Y.C., and Wintle, A.G. (2006) Recuperated OSL dating of fine-grained quartz in Chinese loess. Quat. Geochronol., 1, 89-100. https://doi.org/10.1016/j.quageo.2006.05.020
  32. Watanuki, T., Murray, A.S., and Tsukamoto, S. (2005) Quartz and polymineral luminescence dating of Japanese loess over the last 0.6 Ma: Comparison with an independent chronology. Earth and Planetary Science Letters, 240, 774-789. https://doi.org/10.1016/j.epsl.2005.09.027
  33. Weil, J.A. (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys. Chem. Miner., 10, 149-165. https://doi.org/10.1007/BF00311472
  34. Wintle, A.G. and Murray, A.S. (2006) A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiat. Meas., 41, 369-391. https://doi.org/10.1016/j.radmeas.2005.11.001