DOI QR코드

DOI QR Code

Numerical Study on Effect of Using Elastic Pads in Flexible Forming Process

가변성형 공정에서 탄성 패드의 영향에 관한 수치적 연구

  • 허성찬 (부산대학교 항공우주공학과) ;
  • 서영호 (부산대학교 항공우주공학과) ;
  • 노학곤 (부산대학교 항공우주공학과) ;
  • 구태완 (부산대학교 항공우주공학과) ;
  • 강범수 (부산대학교 항공우주공학과)
  • Received : 2009.09.08
  • Accepted : 2010.03.19
  • Published : 2010.05.01

Abstract

In general, materials that can be used to form elastic pads, such as urethane and rubber, are often used in flexible forming processes by inserting the pads between a blank and flexible die for smoothing the forming surface that is formed by a reconfigurable die. In this study, the effects of the elastic pad on formability in the flexible forming process for sheet metals are investigated by performing numerical simulations. In the simulation, the hyperelastic material model is used, where the urethane elastic pads serve as elastic cushions. Case studies are carried out for elastic materials with different hardness values and thicknesses. The results are used to evaluate formability by comparing the configuration of the deformed blank and its major cross-sectional profiles. It is verified that the elastic pad used in the flexible forming process for sheet materials should be hard and that its thickness should be chosen appropriately.

가변성형공정에서는 형상 변형이 가능한 가변금형의 성형면을 고르게 형성하기 위하여 일반적으로 우레탄, 고무 등 같은 탄성체 패드를 가변금형과 소재 사이에 삽입하여 이용한다. 이에 본 연구에서는 이러한 탄성패드가 성형성에 미치는 영향에 대한 조사를 위하여 탄성체의 경도 및 두께를 주요 변수로 고려한 수치해석적 연구를 수행하였다. 탄성패드 소재로는 우레탄을 이용하였으며, 이의 물성 획득을 위한 압축시험을 수행하였고, 초탄성체 재료 모델로 가정하여 가변성형공정해석에 적용하였다. 탄성체의 경도와 두께의 변화에 따른 해석 결과로부터 성형 정확도를 조사하기 위하여 주방향의 단면형상을 비교하였으며, 목적형상에 대한 오차를 비교하였다. 이로부터 가변성형공정에 이용되는 탄성 패드가 적절히 선정되어야 함을 확인하였으며, 패드의 경도 및 두께 선정에 대한 기준을 제안하였다.

Keywords

References

  1. Tan, F. X., Li, M. Z. and Cai, Z. Y., 2007, “Research on the Process of Multi-Point Forming for the Customized Titanium Alloy Cranial Prosthesis,” J. Mat. Proc. Tech., Vol. 187-188, pp. 453-457. https://doi.org/10.1016/j.jmatprotec.2006.11.149
  2. Sun, G., Li, M. Z., Yan, X. P., and Zhong, P. P., 2007, “Study of Blank-Holder Technology on Multi-Point Forming of Thin Sheet Metal,” J. Mat. Proc. Tech., Vol. 187-188, pp. 517-520. https://doi.org/10.1016/j.jmatprotec.2006.11.133
  3. Cai, Z. Y., Wang, S. H., Xu, X. D. and Li, M. Z., 2008, “Numerical Simulation for the Multi-Point Stretch Forming Process of Sheet Metal,” J. Mat. Proc. Tech., Vol. 209, No. 1, pp. 396-407. https://doi.org/10.1016/j.jmatprotec.2008.02.010
  4. Pasch, K. A., 1981, “Design of a Discrete Die Surface for Sheet Metal Forming,” S.B. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology.
  5. Li, M. Z., Liu, Y. H., Su, S. Z. and Li, G. Q., 1999, “Multi-Point Forming: a Flexible Manufacturing Method for a 3-d Surface sheet,” J. Mat. Proc. Tech., Vol. 87, Issues 1-3, pp. 277-280. https://doi.org/10.1016/S0924-0136(98)00364-1
  6. Qian, Z. R., Li, M. Z. and Tan, F. X., 2007, “The Analyse on the Process of Multi-Point Forming for Dish Head,” J. Mat. Proc. Tech., Vol. 187-188, pp. 333-338.
  7. Zhang, Q., Dean, T. A. and Wang, Z. R., 2006, “Numerical Simulation of Deformation in Multi-Point Sandwich Forming,” Int. J. Mach. Tools Manuf., Vol. 46, pp. 699-707. https://doi.org/10.1016/j.ijmachtools.2005.07.034
  8. Heo, S. C., Seo, Y. H., Park, J. W., Ku, T. W., Kim, J. and Kang, B. S., 2008, “Numerical and Experimental Study on Plate Forming Process using Flexible Die,” Transactions of Materials Processing, Vol. 17, No.8, pp. 570-578. https://doi.org/10.5228/KSPP.2008.17.8.570
  9. Li, M. Z., Cai, Z. Y., Sui, Z. and Yan, Q. G., 2002, “Multi-Point Forming Technology for Sheet Metal,” J. Mat. Proc. Tech., Vol. 129, pp. 333-338. https://doi.org/10.1016/S0924-0136(02)00685-4
  10. Heo, S. C., Seo, Y. H., Ku, T. W., Kim, J. and Kang, B. S., 2009, “Study on Application of Flexible Die to Sheet Metal Forming Process,” Transactions of Materials Processing, Vol. 18, No.7, pp. 556-564. https://doi.org/10.5228/KSPP.2009.18.7.556

Cited by

  1. Manufacture of Architectural Skin-structure with a Double Curved Surface Using Flexible Stretch Forming vol.22, pp.4, 2013, https://doi.org/10.5228/KSTP.2013.22.4.196
  2. Study on multiple die stretch forming for curved surface of sheet metal vol.15, pp.11, 2014, https://doi.org/10.1007/s12541-014-0610-8
  3. Effect of Shape Design Variables on Flexibly-Reconfigurable Roll Forming of Multi-curved Sheet Metal vol.23, pp.2, 2014, https://doi.org/10.5228/KSTP.2014.23.2.103
  4. Numerical and experimental study of stretching effect on flexible forming technology vol.73, pp.9-12, 2014, https://doi.org/10.1007/s00170-014-5859-7
  5. Surrogate-based multi-point forming process optimization for dimpling and wrinkling reduction vol.85, pp.1-4, 2016, https://doi.org/10.1007/s00170-015-7897-1