Abstract
The rigorous validation of the accuracy of metamodels is an important topic in research on metamodel techniques. Although a leave-k-out cross-validation technique involves a considerably high computational cost, it cannot be used to measure the fidelity of metamodels. Recently, the mean$_0$ validation technique has been proposed to quantitatively determine the accuracy of metamodels. However, the use of mean$_0$ validation criterion may lead to premature termination of a sampling process even if the kriging model is inaccurate. In this study, we propose a new validation technique based on the mean and variance of the response evaluated when sequential sampling method, such as maximum entropy sampling, is used. The proposed validation technique is more efficient and accurate than the leave-k-out cross-validation technique, because instead of performing numerical integration, the kriging model is explicitly integrated to accurately evaluate the mean and variance of the response evaluated. The error in the proposed validation technique resembles a root mean squared error, thus it can be used to determine a stop criterion for sequential sampling of metamodels.
메타모델의 정확도를 엄밀하게 검증하는 것은 메타모델링에서 중요한 연구주제이다. k 점 선택교차검증기법이 많은 계산시간을 요구하면서도 메타모델의 정확도를 정략적으로 측정하지 못한다. 최근들어, 평균 $_0$ 기준이 메타모델의 정확도를 정량적으로 제공하기 위하여 제안되었다. 그러나 평균 $_0$ 검증 기준은 크리깅 메타모델이 부정확함에도 불구하고 일찍 수렴하는 경향이 있다. 따라서 본 연구에서는 최대엔트로피를 이용한 순차적 실험계획에서 크리깅모델의 평균과 분산을 이용한 정확도 평가기법을 제안한다. 이 제안한 기법은 평균 및 분산을 계산할 때 수치해석으로 구하는 것이 아니라 크리깅메타모델을 직접 적분하여 구하기 때문에 k 점 선택교차검증기법보다 효율적이며 정확하다. 제안한 기준은 실제 응답의 평균제곱오차의 경향과 매우 유사하여 순차적 실험계획의 수렴기준으로 사용할 수 있다.