• 제목/요약/키워드: Flexible Forming Process

검색결과 76건 처리시간 0.035초

가변금형을 이용한 판재 성형에 대한 해석 및 실험 (Numerical and Experimental Study on Plate Forming Process using Flexible Die)

  • 허성찬;서영호;박중원;구태완;김정;강범수
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.570-578
    • /
    • 2008
  • A flexible forming apparatus is composed a number of punches which have spherical pin tip shape instead of conventional solid die. The flexible forming tool consisted of punch array in a matrix form was proposed as an alternative forming method to substitute the conventional line heating method which use heat source to induce residual stress along specified heating lines. In this study, application of the flexible forming process to the small scale curved plate forming was conducted. Numerical simulations for both solid and flexible die forming process were carried out to compare the shape of the products between flexible and conventional die forming process. In addition, spring-back analysis was conducted to figure out the feasibility of the flexible forming process comparing with the die forming process in view of final configuration of the specimens. Moreover, experiment was also carried out to confirm the formability of the process. Consequently, it was confirmed that the flexible die forming method has capability and feasibility to manufacture the curved plates for shipbuilding.

가변금형의 박판 성형공정 적용 연구 (Study on Application of Flexible Die to Sheet Metal Forming Process)

  • 허성찬;서영호;구태완;김정;강범수
    • 소성∙가공
    • /
    • 제18권7호
    • /
    • pp.556-564
    • /
    • 2009
  • Flexible forming process for sheet material using reconfigurable die is introduced based on numerical simulation. In general, this flexible forming process using the reconfigurable die has been utilized for manufacturing of curved thick plates used for hull structures, architectural structures and so on. In this study, numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. The numerical simulation and experimental verification for sheet metal forming process using a flexible forming machine that is more suitable for thick plate forming process are carried out to confirm the appropriateness of the simulation process. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation for smoothing the forming surface which is discrete due to characteristics of the flexile die. In the flexible forming process for sheet metal, effect of a blank holder is also investigated according to blank holding methods. Formability in view of occurrence of dimples is compared with regard to the various punch sizes. Consequently, it is confirmed that the flexible forming for sheet material using urethane pad has enough capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming method.

박판소재 곡면성형을 위한 가변성형공정 해석 (Flexible Forming Process Analysis for Sheet Material Curved Surface Forming)

  • 서영호;허성찬;구태완;김정;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.118-121
    • /
    • 2008
  • Flexible die is more efficacious than fixed die which is generally used in stretch forming process in view of production cost. Accordingly, in order to verily the validity of the flexible forming process, curved thin skin structure forming analyses using the fixed and flexible die were performed. As results, merit and demerit with regard to the fixed and flexible die were confirmed. The result of the stretch forming process analysis using the flexible die was better than that using the fixed die in view of the elastic recovery. However wrinkles were occurred on the sheet material due to die cavities between the punches in the flexible forming process, thus the solutions against these problems were presented.

  • PDF

박판용 가변성형공정의 수치적 연구 (Numerical Study on Flexible Forming Process for Sheet Metal)

  • 허성찬;서영호;박중원;구태완;송우진;김정;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.281-284
    • /
    • 2009
  • Flexible forming process for sheet metal using reconfigurable die is introduced based on numerical simulation. Numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. Elastic cushion which has high resilience behavior from excessive deformation are inserted between forming punches and blank material for smoothing the forming surface which has discrete due to characteristics of the flexile die. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation. Formability in view of surface defect such as onset of dimple is compared with regard to various punch sizes. Consequently, it is confirmed that the flexible forming process for sheet material has appropriate capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming process.

  • PDF

유한요소법을 이용한 가변 스트레치 성형공정의 적합성 검증 (Usefulness Verification for Flexible Stretch Forming Process using finite Element Method)

  • 서영호;허성찬;박중원;송우진;구태완;김정;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.241-244
    • /
    • 2009
  • This paper deals with a usefulness verification of stretch forming process using flexible die. The stretch forming method is widely used in aircraft and high-speed train industries for manufacturing of skin structure, which is made of sheet metal. A great number of solid dies are originally used and developed for specific shapes with respect to different curvature radii of the skin structures. Accordingly, flexible stretch forming process is proposed in this study. It replaces the conventional solid dies with a set of height adjustable discrete punches. A usefulness of the flexible die is verified through extensive numerical simulations of the stretch forming process for simply curved sheet plate. The elastic recovery is considered and formability evaluations are conducted through a comparison of symmetry plane configurations.

  • PDF

머신러닝을 활용한 가변 롤포밍 공정 web-warping 예측모델 개발 (Application of Machine Learning to Predict Web-warping in Flexible Roll Forming Process)

  • 우영윤;문영훈
    • 소성∙가공
    • /
    • 제29권5호
    • /
    • pp.282-289
    • /
    • 2020
  • Flexible roll forming is an advanced sheet-metal-forming process that allows the production of parts with various cross-sections. During the flexible process, material is subjected to three-dimensional deformation such as transverse bending, inhomogeneous elongations, or contraction. Because of the effects of process variables on the quality of the roll-formed products, the approaches used to investigate the roll-forming process have been largely dependent on experience and trial- and-error methods. Web-warping is one of the major shape defects encountered in flexible roll forming. In this study, an SVR model was developed to predict the web-warping during the flexible roll forming process. In the development of the SVR model, three process parameters, namely the forming-roll speed condition, leveling-roll height, and bend angle were considered as the model inputs, and the web-warping height was used as the response variable for three blank shapes; rectangular, concave, and convex shape. MATLAB software was used to train the SVR model and optimize three hyperparameters (λ, ε, and γ). To evaluate the SVR model performance, the statistical analysis was carried out based on the three indicators: the root-mean-square error, mean absolute error, and relative root-mean-square error.

다중곡률형상의 판재성형을 위한 가변롤성형 기술 (Flexible Roll Forming Technology for Multi-Curved Sheet Metal Forming)

  • 윤준석;손소은;송우진;김정;강범수
    • 소성∙가공
    • /
    • 제22권5호
    • /
    • pp.243-249
    • /
    • 2013
  • The multi-point forming (MPF) process for three-dimensional curved sheet metal has been developed as an alternative to the conventional die forming process since MPF allows the manufacturing of various shapes using one die set and reduce the cost of production. However, the MPF process cannot provide high quality products yet due to defects occurring in the sheet such as dimples and wrinkles. It can also lead to economic loss because of long tool setup time and additional machining required outside of the sheet formed area. In this study, a new sheet metal forming method, called flexible roll forming (FRF), is proposed to solve the problems of existing processes for three-dimensional curved sheet metal. This progressive process utilizes adjusting rods, as well as upper and lower flexible rollers as forming tools. In contrast with the existing processes, FRF can reduce the additional production costs because of the possible blank size for the part longitudinal direction, which is unrestricted. In this research, methods and procedures of the flexible roll forming technology are described. Numerical forming simulations of representative three-dimensional curved sheet products are also carried out to demonstrate the feasibility of this technology.

유한요소법을 이용한 가변스트레치공정 성형변수에 따른 성형오차 경향분석 (Tendency Analysis of Shape Error According to Forming Parameter in Flexible Stretch Forming Process Using Finite Element Method)

  • 서영호;허성찬;송우진;김정;강범수
    • 소성∙가공
    • /
    • 제19권8호
    • /
    • pp.486-493
    • /
    • 2010
  • A shape error of the sheet metal product made by a flexible stretch forming process is occurred by a various forming parameters. A die used in the flexible stretch forming is composed of a punch array to obtain the various objective surfaces using only one die. But gaps between the punches induce the shape error and the defect such as a scratch. Forming parameters of the punch size and the elastic pad to prevent the surface defect must be considered in the flexible die design process. In this study, tendency analysis of shape error according to the forming parameters in the flexible stretch process is conducted using a finite element method. Three forming parameters, which are the punch size, the objective curvature radius and the elastic pad thickness, are considered. Finite element modeling using the punch height calculation algorithm and the evaluation method of the shape error, which is a representative value for the formability of formed surface, are proposed. Consequently, the shape error is in proportion to the punch size and is out of proportion to the objective curvature radius and the elastic pad thickness.

후판의 곡면 가공을 위한 가변성형기술 적용 연구 (Study on Application of Flexible Forming Technology for Curved Plate Forming using Thick Plate)

  • 허성찬;서영호;박중원;이현민;구태완;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.122-125
    • /
    • 2008
  • Generally, in shipbuilding, large curved block components which have large curvature radius along various directions are used for huge ships such as LPG-vessel and oil tanker ships. Lots of the blocks are manufactured by line heating method which uses a heat source to bend the thick plate materials. The conventional forming process is entirely dependent on the experience of experts because it is done by manual method thus the curvatures and qualities are not uniform even for same part. However, it is hard to adopt the press forming process using die tool sets fur the manufacturing because of the characteristics of the industry that based on the small quantity and variety in the products. In this study, flexible forming technology using numbers of punches is investigated based on the simulation to substitute for the conventional forming method. Thick plate material model was applied to the proposed process to verify the feasibility for hull structure block forming process. The press forming processes were simulated by adopting the explicit-to-implicit sequential solution. Moreover, experiment of the flexible forming process was also conducted and its results were compared with that of simulation.

  • PDF

가변성형공정에서 성형성 향상을 위한 해석 및 실험적 연구 (Numerical and Experimental Study for Improvement of Formability in Flexible Forming Process)

  • 허성찬;서영호;강범수;김정
    • 소성∙가공
    • /
    • 제21권7호
    • /
    • pp.432-440
    • /
    • 2012
  • In this article, the design of the flexible forming process considering die shape compensation using an iterative over-bending method based on numerical simulation was conducted. In this method, the springback shape obtained from the final step of the first forming simulation is compared with the desired objective shape, and a shape error is calculated as a vector norm with three-dimensional coordinates. The error vector is inversely added to the objective surface to compensate both the upper and lower flexible die configurations. The flexible die shapes are recalculated and the punch arrays are adjusted according to the over-bent forming surface. These iterative procedures are repeated until the shape error variation converges to a small value. In addition, experimental verification was conducted using a 2000-kN flexible forming apparatus for thick plates. Finally, the configuration of the prototype obtained from the experiment was compared with the numerical simulation results, which had springback compensation. It is confirmed that the proposed method for compensating for the forming error could be used in the design of flexible forming of thick-curved plates.