DOI QR코드

DOI QR Code

Interleukin-4, Oxidative Stress, Vascular Inflammation and Atherosclerosis

  • Lee, Yong-Woo (Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University (Virginia Tech)) ;
  • Kim, Paul H. (Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University (Virginia Tech)) ;
  • Lee, Won-Hee (School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University (Virginia Tech)) ;
  • Hirani, Anjali A. (School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University (Virginia Tech))
  • Received : 2010.03.30
  • Accepted : 2010.04.14
  • Published : 2010.04.30

Abstract

The pro-oxidative and pro-inflammatory pathways in vascular endothelium have been implicated in the initiation and progression of atherosclerosis. In fact, inflammatory responses in vascular endothelium are primarily regulated through oxidative stress-mediated signaling pathways leading to overexpression of pro-inflammatory mediators. Enhanced expression of cytokines, chemokines and adhesion molecules in endothelial cells and their close interactions facilitate recruiting and adhering blood leukocytes to vessel wall, and subsequently stimulate transendothelial migration, which are thought to be critical early pathologic events in atherogenesis. Although interleukin-4 (IL-4) was traditionally considered as an anti-inflammatory cytokine, recent in vitro and in vivo studies have provided robust evidence that IL-4 exerts pro-inflammatory effects on vascular endothelium and may play a critical role in the development of atherosclerosis. The cellular and molecular mechanisms responsible for IL-4-induced atherosclerosis, however, remain largely unknown. The present review focuses on the distinct sources of IL-4-mediated reactive oxygen species (ROS) generation as well as the pivotal role of ROS in IL-4-induced vascular inflammation. These studies will provide novel insights into a clear delineation of the oxidative mechanisms of IL-4-mediated stimulation of vascular inflammation and subsequent development of atherosclerosis. It will also contribute to novel therapeutic approaches for atherosclerosis specifically targeted against pro-oxidative and pro-inflammatory pathways in vascular endothelium.

Keywords

References

  1. Aiello, R. J., Bourassa, P. K., Lindsey, S., Weng, W., Natoli, E., Rollins, B. J. and Milos, P. M. (1999). Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 19, 1518-1525. https://doi.org/10.1161/01.ATV.19.6.1518
  2. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. (2010). Heart disease and stroke statistics - 2010 update. Circulation 121, e1-e170. https://doi.org/10.1161/CIRCULATIONAHA.109.878314
  3. Barks, J. L., McQuillan, J. J. and Iademarco, F. (1997). $TNF-{\alpha}$ and IL-4 synergistically increase vascular cell adhesion molecule-1 expression in cultured vascular smooth muscle cells. J. Immunol. 159, 4532-4538.
  4. Basta, G., Lazzerini, G., Del Turco, S., Ratto, G. M., Schmidt, A. M. and De Caterina, R. (2005). At least 2 distinct pathways generating reactive oxygen species mediate vascular cell adhesion molecule-1 induction by advanced glycation end products. Arterioscler. Thromb. Vasc. Biol. 25, 1401-1407. https://doi.org/10.1161/01.ATV.0000167522.48370.5e
  5. Bedard, K. and Krause, K. (2007). The NOX family of ROSgenerating NADPH oxidase: Physiology and Pathophysiology. Physiol. Rev. 87, 245-313. https://doi.org/10.1152/physrev.00044.2005
  6. Berliner, J. A., Navab, M., Fogelman, A. M., Frank, J. S., Demer, L. L., Edwards, P. A., Watson, A. D. and Lusis, A. J. (1995). Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 91, 2488-2496. https://doi.org/10.1161/01.CIR.91.9.2488
  7. Blankenberg, S., Barbaux, S. and Tiret, L. (2003). Adhesion molecules and atherosclerosis. Atherosclerosis 170, 191-203. https://doi.org/10.1016/S0021-9150(03)00097-2
  8. Blease, K., Seybold, J., Adcock, I. M., Hellewell, P. G. and Burke-Gaffney, A. (1998). Interleukin-4 and lipopolysaccharide synergize to induce vascular cell adhesion molecule-1 expression in human lung microvascular endothelial cells. Am. J. Respir. Cell Mol. Biol. 18, 620-630. https://doi.org/10.1165/ajrcmb.18.5.3052
  9. Boring, L., Gosling, J., Cleary, M. and Charo, I. F. (1998). Decreased lesion formation in $CCR2^{−/−}$ mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894-897. https://doi.org/10.1038/29788
  10. Bouloumie, A., Marumo, T., Lafontan, M. and Busse, R. (1999). Leptin induces oxidative stress in human endothelial cells. FASEB J. 13, 1231-1238. https://doi.org/10.1096/fasebj.13.10.1231
  11. Brandes, R. P. (2003). A radical adventure: The quest for specific functions and inhibitors of vascular NADPH oxidase. Circ. Res. 92, 583-585. https://doi.org/10.1161/01.RES.0000066880.62205.B0
  12. Braunersreuther, V., Mach, F. and Steffens, S. (2007). The specific role of chemokines in atherosclerosis. Thromb. Haemost. 97, 714-721.
  13. Buono, C., Come, C. E., Stavrakis, G., Maguire, G. F., Connelly, P. W. and Lichtman, A. H. (2003). Influence of $interferon-{\gamma}$ on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 23, 454-460. https://doi.org/10.1161/01.ATV.0000059419.11002.6E
  14. Bursill, C. A., Channon, K. M. and Greaves, D. R. (2004). The role of chemokines in atherosclerosis: recent evidence from experimental models and population genetics. Curr. Opin. Lipidol. 15, 145-149. https://doi.org/10.1097/00041433-200404000-00007
  15. Cesari, M., Penninx, B. W., Newman, A. B., Kritchevsky, S. B., Nicklas, B. J., Sutton-Tyrrell, K., Tracy, R. P., Rubin, S. M., Harris, T. B. and Pahor, M. (2003). Inflammatory markers and cardiovascular disease (The Health, Aging and Body Composition [Health ABC] Study). Am. J. Cardiol. 92, 522-528. https://doi.org/10.1016/S0002-9149(03)00718-5
  16. Chen, C. C. and Manning, A. M. (1996). $TGF-{\beta}1$, IL-10 and IL-4 differentially modulate the cytokine-induced expression of IL-6 and IL-8 in human endothelial cells. Cytokine 8, 58-65. https://doi.org/10.1006/cyto.1995.0008
  17. Clark, L. T. (2002). Vascular inflammation as a therapeutic target for prevention of cardiovascular disease. Curr. Atheroscler. Rep. 4, 77-81.
  18. Colotta, F., Sironi, M., Borre, A., Luini, W., Maddalena, F. and Mantovani, A. (1992). Interleukin 4 amplifies monocyte chemoattractant protein and interleukin 6 production by endothelial cells. Cytokine 4, 24-28. https://doi.org/10.1016/1043-4666(92)90032-M
  19. Corda, S., Laplace, C., Vicaut, E. and Duranteau, J. (2001). Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis $factor-{\alpha}$ is mediated by ceramide. Am. J. Respir. Cell Mol. Biol. 24, 762-768.
  20. Cybulsky, M. and Gimbrone, M. (1991). Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251, 788-791. https://doi.org/10.1126/science.1990440
  21. Davenport, P. and Tipping, P. G. (2003). The role of interleukin- 4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am. J. Pathol. 163, 1117-1125. https://doi.org/10.1016/S0002-9440(10)63471-2
  22. Davies, M. J., Gordon, J. L., Gearing, A. J., Pigott, R., Woolf, N., Katz, D. and Kyriakopoulos, A. (1993). The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J. Pathol. 171, 223-229. https://doi.org/10.1002/path.1711710311
  23. Elices, M., Osborn, L., Takada, Y., Crouse, C., Luhowskyj, S., Hemler, M. and Lobb, R. (1990). VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 60, 577-584. https://doi.org/10.1016/0092-8674(90)90661-W
  24. Galea, P., Lebranchu, Y., Thibault, G. and Bardos, P. (1992). Interleukin 4 and tumor necrosis factor ${\alpha}$ induce different adhesion pathways in endothelial cells for the binding of peripheral blood lymphocytes. Scand. J. Immunol. 36, 575-585. https://doi.org/10.1111/j.1365-3083.1992.tb03226.x
  25. Galea, P., Thibault, G., Lacord, M., Bardos, P. and Lebranchu Y. (1993). IL-4, but not tumor necrosis $factor-{\alpha}$, increases endothelial cell adhesiveness for lymphocytes by activating a cAMP-dependent pathway. J. Immunol. 151, 588-596.
  26. Goettsch, C., Goettsch, W., Arsov, A., Hofbauer, L. C., Bornstein, S. R. and Morawietz, H. (2009). Long-term cyclic strain downregulates endothelial Nox4. Antioxid. Redox. Signal 11, 2385-2397. https://doi.org/10.1089/ars.2009.2561
  27. Gosling, J., Slaymaker, S., Gu, L., Tseng, S., Zlot, C. H., Young, S. G., Rollins, B. J. and Charo, I. F. (1999). MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J. Clin. Invest. 103, 773-778. https://doi.org/10.1172/JCI5624
  28. Gu, L., Okada, Y., Clinton, S. K., Gerard, C., Sukhova, G. K., Libby, P. and Rollins, B. J. (1998). Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell 2, 275-281. https://doi.org/10.1016/S1097-2765(00)80139-2
  29. Gu, L., Tseng, S. C. and Rollins, B. J. (1999). Monocyte chemoattractant protein-1. Chem. Immunol. 72, 7-29. https://doi.org/10.1159/000058723
  30. Guzik, T. J. and Griendling, K. K. (2009). NADPH oxidases: Molecular understanding finally reaching the clinical level? Antioxid. Redox. Signal 11, 2365-2370. https://doi.org/10.1089/ars.2009.2615
  31. Guzik, T. J., Sadowski, J., Guzik, B., Jopek, A., Kapelak, B., Przybylowski, P., Wierzbicki, K., Korbut, R., Harrison, D. G. and Channon, K. M. (2006). Coronary artery superoxide production and nox isoform expression in human coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 26, 333-339. https://doi.org/10.1161/01.ATV.0000196651.64776.51
  32. Heitzer, T., Schlinzig, T., Krohn, K., Meinertz, T. and Munzel, T. (2001). Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104, 2673-2678. https://doi.org/10.1161/hc4601.099485
  33. Hennig, B. and Chow, C. K. (1988). Lipid peroxidation and endothelial cell injury: implication in atherosclerosis. Free Radical Biol. Med. 4, 99-106. https://doi.org/10.1016/0891-5849(88)90070-6
  34. Hennig, B., Toborek, M., McClain, C. J. and Diana, J. N. (1996). Nutritional implications in vascular endothelial cell metabolism. J. Am. Coll. Nutr. 15, 345-358. https://doi.org/10.1080/07315724.1996.10718609
  35. Hong, H. Y., Lee, H. Y., Kwak, W., Yoo, J., Na, M. H., So, I. S., Kwon, T. H., Park, H. S., Huh, S., Oh, G. T., Kwon, I. C., Kim, I. S. and Lee, B. H. (2008). Phage display selection of peptides that home to atherosclerotic plaques: IL-4 receptor as a candidate target in atherosclerosis. J. Cell. Mol. Med. 12, 2003-2014. https://doi.org/10.1111/j.1582-4934.2008.00189.x
  36. Huang, H., Lavoie-Lamoureux, A. and Lavoie, J. P. (2009). Cholinergic stimulation attenuates the IL-4 induced expression of E-selectin and vascular endothelial growth factor by equine pulmonary artery endothelial cells. Vet. Immunol. Immunopharmacol. 132, 116-121. https://doi.org/10.1016/j.vetimm.2009.05.003
  37. Huang, H., Lavoie-Lamoureux, A., Moran, K. and Lavoie, J. P. (2007). IL-4 stimulates the expression of CXCL-8, E-selectin, VEGF, and inducible nitric oxide synthase mRNA by equine pulmonary artery endothelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L1147-L1154. https://doi.org/10.1152/ajplung.00294.2006
  38. Huber, S. A., Sakkinen, P., Conze, D., Hardin, N. and Tracy, R. (1999). Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 19, 2364-2367. https://doi.org/10.1161/01.ATV.19.10.2364
  39. Huo, Y., Hafezi-Moghadam, A. and Ley, K. (2000). Role of vascular cell adhesion molecule-1 and fibronectin connecting segment-1 in monocyte rolling and adhesion on early atherosclerotic lesions. Circ. Res. 87, 153-159. https://doi.org/10.1161/01.RES.87.2.153
  40. Huo, Y. and Ley, K. (2001). Adhesion molecules and atherogenesis. Acta. Physiol. Scand. 173, 35-43. https://doi.org/10.1046/j.1365-201X.2001.00882.x
  41. Iiyama, K., Hajra, L., Iiyama, M., Li, H., DiChiara, M., Medoff, B. D. and Cybulsky, M. I. (1999). Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ. Res. 85, 199-207. https://doi.org/10.1161/01.RES.85.2.199
  42. Inoue, S., Egashira, K., Ni, W., Kitamoto, S., Usui, M., Otani, K., Ishibashi, M., Hiasa, K., Nishida, K. and Takeshita, A. (2002). Anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice. Circulation 106, 2700-2706. https://doi.org/10.1161/01.CIR.0000038140.80105.AD
  43. Khan, B. V., Parthasarathy, S. S., Alexander, R. W. and Medford, R. M. (1995). Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J. Clin. Invest. 95, 1262-1270. https://doi.org/10.1172/JCI117776
  44. King, V. L., Szilvassy, S. J. and Daugherty, A. (2002). Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor-/-mice. Arterioscler. Thromb. Vasc. Biol. 22, 456-461. https://doi.org/10.1161/hq0302.104905
  45. Kirii, H., Niwa, T., Yamada, Y., Wada, H., Saito, K., Iwakura, Y., Asano, M., Moriwaki, H. and Seishima, M. (2003). Lack of $interleukin-1{\beta}$ decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 23, 656-660. https://doi.org/10.1161/01.ATV.0000064374.15232.C3
  46. Kishikawa, H., Shimokama, T. and Watanabe, T. (1993). Localization of T lymphocytes and macrophages expressing IL-1, IL-2 receptor, IL-6 and TNF in human aortic intima: Role of cell mediated immunity in human atherogenesis. Virchows Arch. A. Pathol. Anat. Histopathol. 423, 433-442. https://doi.org/10.1007/BF01606532
  47. Kishimoto, T. (2005). Interleukin-6: From basic science to medicine-40 years in immunology. Annu. Rev. Immunol. 23, 1-21. https://doi.org/10.1146/annurev.immunol.23.021704.115806
  48. Lee, Y. W., Eum, S. Y., Chen, K. C., Hennig, B. and Toborek, M. (2004b). Gene expression profile in interleukin-4-stimulated human vascular endothelial cells. Mol. Med. 10, 19-27. https://doi.org/10.1007/s00894-003-0164-7
  49. Lee, Y. W., Eum, S. Y., Nath, A. and Toborek, M. (2004a). Estrogen-mediated protection against HIV Tat protein-induced inflammatory pathways in human vascular endothelial cells. Cardiovasc. Res. 63, 139-148. https://doi.org/10.1016/j.cardiores.2004.03.006
  50. Lee, Y. W., Hennig, B. and Toborek, M. (2003). Redox-regulated mechanisms of IL-4-induced MCP-1 expression in human vascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 284, H185-H192. https://doi.org/10.1152/ajpheart.00524.2002
  51. Lee, Y. W. and Hirani, A. A. (2006). Role of interleukin-4 in atherosclerosis. Arch. Pharm. Res. 29, 1-15. https://doi.org/10.1007/BF02977462
  52. Lee, Y. W., Kühn, H., Hennig, B., Neish, A. S. and Toborek, M. (2001a). IL-4-induced oxidative stress upregulates VCAM-1 gene expression in human endothelial cells. J. Mol. Cell. Cardiol. 33, 83-94. https://doi.org/10.1006/jmcc.2000.1278
  53. Lee, Y. W., Kuhn, H., Hennig, B. and Toborek, M. (2000). IL-4 induces apoptosis of endothelial cells through the caspase-3-dependent pathway. FBES Lett. 485, 122-126. https://doi.org/10.1016/S0014-5793(00)02208-0
  54. Lee, Y. W., Kuhn, H., Kaiser, S., Hennig, B., Daugherty, A. and Toborek, M. (2001b). Interleukin-4 induces transcription of the 15-lipoxygenase-I gene in human endothelial cells. J. Lipid Res. 42, 783-791.
  55. Lee, Y. W., Lee, W. H. and Kim, P. H. (2010a). Oxidative mechanisms of IL-4-induced IL-6 expression in vascular endothelium. Cytokine 49, 73-79. https://doi.org/10.1016/j.cyto.2009.08.009
  56. Lee, Y. W., Lee, W. H. and Kim, P. H. (2010b). Role of NADPH oxidase in interleukin-4-induced monocyte chemoattractant protein-1 expression in vascular endothelium. Inflamm. Res. In press [DOI: 10.1007/s00011-010-0187-3].
  57. Li, H., Cybulsky, M. I., Gimbrone, M. A. Jr. and Libby, P. (1993). An atherogenic diet rapidly induces VCAM-1, a cytokineregulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler. Thromb. 13, 197-204. https://doi.org/10.1161/01.ATV.13.2.197
  58. Libby, P. and Galis, Z. S. (1995). Cytokines regulate genes involved in atherogenesis. Ann. N. Y. Acad. Sci. 748, 158-168.
  59. Libby, P., Ridker, P. M. and Maseri, A. (2002). Inflammation and atherosclerosis. Circulation 105, 1135-1143. https://doi.org/10.1161/hc0902.104353
  60. Lumsden, A. B., Chen, C., Hughes, J. D., Kelly, A. B., Hanson, S. R. and Harker, L. A. (1997). Anti-VLA-4 antibody reduces intimal hyperplasia in the endarterectomized carotid artery in nonhuman primates. J. Vasc. Surg. 26, 87-93. https://doi.org/10.1016/S0741-5214(97)70151-4
  61. Martinovic, I., Abegunewardene, N., Seul, M., Vosseler, M., Horstick, G., Buerke, M., Darius, H. and Lindemann, S. (2005). Elevated monocyte chemoattractant protein-1 serum levels in patients at risk for coronary artery disease. Circ. J. 69, 1484-1489. https://doi.org/10.1253/circj.69.1484
  62. Marx, N. and Grant, P. J. (2007). Endothelial dysfunction and cardiovascular disease - the lull before the storm. Diab. Vasc. Dis. Res. 4, 82-83. https://doi.org/10.3132/dvdr.2007.024
  63. Masinovsky, B., Urdal, D. and Gallatin, W. M. (1990). IL-4 acts synergistically with $IL-1{\beta}$ to promote lymphocyte adhesion to microvascular endothelium by induction of vascular cell adhesion molecule-1. J. Immunol. 145, 2886-2895.
  64. Nakashima, Y., Raines, E. W., Plump, A. S., Breslow, J. L. and Ross, R. (1998). Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 18, 842-851. https://doi.org/10.1161/01.ATV.18.5.842
  65. Nelken, N. A., Coughlin, S. R., Gordon, D. and Wilcox, J. N. (1991). Monocyte chemoattractant protein-1 in human atheromatous plaques. J. Clin. Invest. 88, 1121-1127. https://doi.org/10.1172/JCI115411
  66. Ni, W., Egashira, K., Kitamoto, S., Kataoka, C., Koyanagi, M., Inoue, S., Imaizumi, K., Akiyama, C., Nishida, K. I. and Takeshita, A. (2001). New anti-monocyte chemoattractant protein-1 gene therapy attenuates atherosclerosis in apolipoprotein E-knockout mice. Circulation 103, 2096-2101. https://doi.org/10.1161/01.CIR.103.16.2096
  67. O’Brien, K. D., Allen, M. D., McDonald, T. O., Chait, A., Harlan, J. M., Fishbein, D., McCarty, J., Ferguson, M., Hudkins, K. and Benjamin, C. D. (1993). Vascular cell adhesion molecule- 1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J. Clin. Invest. 92, 945-951. https://doi.org/10.1172/JCI116670
  68. Oguchi, S., Dimayuga, P., Zhu, J., Chyu, K. Y., Yano, J., Shah, P. K., Nilsson, J. and Cercek, B. (2000). Monoclonal antibody against vascular cell adhesion molecule-1 inhibits neointimal formation after periadventitial carotid artery injury in genetically hypercholesterolemic mice. Arterioscler. Thromb. Vasc. Biol. 20, 1729-1736. https://doi.org/10.1161/01.ATV.20.7.1729
  69. Ohta, H., Wada, H., Niwa, T., Kirii, H., Iwamoto, N., Fujii, H., Saito, K., Sekikawa, K. and Seisima, M. (2005). Disruption of tumor necrosis $factor-{\alpha}$ gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis 180, 11-17. https://doi.org/10.1016/j.atherosclerosis.2004.11.016
  70. Oltman, C. L., Kane, N. L., Miller, F. J. Jr., Spector, A. A., Weintraub, N. L. and Dellsperger, K. C. (2003). Reactive oxygen species mediate arachidonic acid-induced dilation in porcine coronary microvessels. Am. J. Physiol. Heart Circ. Physiol. 285, H2309-H2315. https://doi.org/10.1152/ajpheart.00456.2003
  71. Osborn, L., Hession, C., Tizard, R., Vassallo, C., Luhowskyj, S., Chi-Rosso, G. and Lobb, R. (1989). Direct expression cloning of vascular cell adhesion molecule 1, a cytokineinduced endothelial protein that binds to lymphocytes. Cell 59, 1203-1211. https://doi.org/10.1016/0092-8674(89)90775-7
  72. Paleolog, E. M., Aluri, G. R. and Feldmann, M. (1992). Contrasting effects of interferon ${\gamma}$ and interleukin 4 on responses of human vascular endothelial cells to tumor necrosis factor ${\alpha}$. Cytokine 4, 470-478. https://doi.org/10.1016/1043-4666(92)90007-E
  73. Park, K. W., Baik, H. H. and Jin, B. K. (2008). Interleukin- 4-induced oxidative stress via microglial NADPH oxidase contributes to the death of hippocampal neurons in vivo. Curr. Aging Sci. 1, 192-201. https://doi.org/10.2174/1874609810801030192
  74. Paul, W. E. (1991). Interleukin-4: a prototypic immunoregulatory lymphokine. Blood 77, 1859-1870.
  75. Price, D. T. and Loscalzo, J. (1999). Cellular adhesion molecules and atherogenesis. Am. J. Med. 107, 85-97.
  76. Reape, T. J. and Groot, P. H. (1999). Chemokines and atherosclerosis. Atherosclerosis 147, 213 -225. https://doi.org/10.1016/S0021-9150(99)00346-9
  77. Ridker, P. M., Hennekens, C. H., Buring, J. E. and Rifai, N. (2000a). C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 342, 836-843. https://doi.org/10.1056/NEJM200003233421202
  78. Ridker, P. M., Rifai, N., Stampfer, M. J. and Hennekens, C. H. (2000b). Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101, 1767-1772. https://doi.org/10.1161/01.CIR.101.15.1767
  79. Rocken, M., Racke, M. and Shevach, E. M. (1996). IL-4-induced immune deviation as antigen-specific therapy for inflammatory autoimmune disease. Immunol. Today 17, 225-231. https://doi.org/10.1016/0167-5699(96)80556-1
  80. Rollins, B. J. (1997). Chemokines. Blood 90, 909-928.
  81. Rollins, B. J. and Pober, J. S. (1991). Interleukin-4 induces the synthesis and secretion of MCP-1/JE by human endothelial cells. Am. J. Pathol. 138, 1315-1319.
  82. Ross, R. (1993). The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362, 801-809. https://doi.org/10.1038/362801a0
  83. Ross, R. (1999). Atherosclerosis is an inflammatory disease. Am. Heart J. 138, S419-S420. https://doi.org/10.1016/S0002-8703(99)70266-8
  84. Sakai, A., Kume, N., Nishi, E., Tanoue, K., Miyasaka, M. and Kita, T. (1997). P-selectin and vascular cell adhesion molecule-1 are focally expressed in aortas of hypercholesterolemic rabbits before intimal accumulation of macrophages and T lymphocytes. Arterioscler. Thromb. Vasc. Biol. 17, 310-316. https://doi.org/10.1161/01.ATV.17.2.310
  85. Schleimer, R. P., Sterbinsky, S. A., Kaiser, J., Bickel, C. A., Klunk, D. A., Tomioka, K., Newman, W., Luscinskas, F. W., Gimbrone, M. A. Jr. and McIntyre, B. W. (1992). IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium. Association with expression of VCAM-1. J. Immunol. 148, 1086-1092.
  86. Schuett, H., Luchtefeld, M., Grothusen, C., Grote, K. and Schieffer, B. (2009). How much is too much? Interleukin-6 and its signaling in atherosclerosis. Thromb. Haemost. 102, 215-222.
  87. Seino, Y., Ikeda, U., Ikeda, M., Yamamoto, K., Misawa, Y., Hasegawa, T., Kano, S. and Shimada, K. (1994). Interleukin 6 gene transcripts are expressed in human atherosclerotic lesions. Cytokine 6, 87-91. https://doi.org/10.1016/1043-4666(94)90013-2
  88. Sheikine, Y. A. and Hansson, G. K. (2006). Chemokines as potential therapeutic targets in atherosclerosis. Curr. Drug Targets 7, 13-27. https://doi.org/10.2174/138945006775270240
  89. Shishehbor, M. H. and Bhatt, D. L. (2004). Inflammation and atherosclerosis. Curr. Atheroscler. Rep. 6, 131-139. https://doi.org/10.1007/s11883-004-0102-x
  90. Simmons, P. J., Masinovsky, B., Longenecker, B. M., Berenson, R., Torok-Storb, B. and Gallatin, W. M. (1992). Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoietic progenitor cells. Blood 80, 388-395.
  91. Sorescu, D., Weiss, D., Lassegue, B., Clempus, R. E., Szocs, K., Sorescu, G. P., Valppu, L., Quinn, M. T., Lambeth, J. D., Vega, J. D., Taylor, W. R. and Griendling, K. K. (2002). Superoxide production and expression of Nox family proteins in human atherosclerosis. Circulation 105, 1429-1435. https://doi.org/10.1161/01.CIR.0000012917.74432.66
  92. Srinivasan, S., Hatley, M. E., Reilly, K. B., Danziger, E. C. and Hedrick, C. C. (2004). Modulation of $PPAR{\alpha}$ expression and inflammatory interleukin-6 production by chronic glucose increases monocyte/endothelial adhesion. Arterioscler. Thromb. Vasc. Biol. 24, 851-857. https://doi.org/10.1161/01.ATV.zhq0504.2260
  93. Strieter, R. M., Wiggins, R., Phan, S. H., Wharram, B. L., Showell, H. J., Remick, D. G., Chensue, S. W. and Kunkel, S. L. (1989). Monocyte chemotactic protein gene expression by cytokine-treated human fibroblasts and endothelial cells. Biochem. Biophys. Res. Commun. 162, 694-700. https://doi.org/10.1016/0006-291X(89)92366-8
  94. Sukovich, D. A., Kauser, K., Shirley, F. D., DelVecchio, V., Halks-Miller, M. and Rubanyi, G. M. (1998). Expression of interleukin-6 in atherosclerotic lesions of male apoEknockout mice. Arterioscler. Thromb. Vasc. Biol. 18, 1498-1505. https://doi.org/10.1161/01.ATV.18.9.1498
  95. Takeya, M., Yoshimura, T., Leonard, E. J. and Takahashi, K. (1993). Detection of monocyte chemoattractant protein-1 in human atherosclerotic lesions by an anti-monocyte chemoattractant protein-1 monoclonal antibody. Hum. Pathol. 24, 534-539. https://doi.org/10.1016/0046-8177(93)90166-E
  96. Taubman, M. B., Rollins, B. J., Poon, M., Marmur, J., Green, R. S., Berk, B. C. and Nadal-Ginard, B. (1992). JE mRNA accumulates rapidly in aortic injury and in platelet-derived growth factor-stimulated vascular smooth muscle cells. Circ. Res. 70, 314-325. https://doi.org/10.1161/01.RES.70.2.314
  97. Tedgui, A. and Mallat, Z. (2006). Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol. Rev. 86, 515-581. https://doi.org/10.1152/physrev.00024.2005
  98. Thomas, S. R., Witting, P. K. and Drummond, G. R. (2008). Redox control of endothelial function and dysfunction: Molecular mechanisms and therapeutic opportunities. Antioxid. Redox Signal. 10, 1713-1765. https://doi.org/10.1089/ars.2008.2027
  99. Toborek, M. and Kaiser, S. (1999). Endothelial cell functions. Relationship to atherogenesis. Basic Res. Cardiol. 94, 295-314. https://doi.org/10.1007/s003950050156
  100. Walch, L., Massade, L., Dufilho, M., Brunet, A. and Rendu, F. (2006). Pro-atherogenic effect of interleukin-4 in endothelial cells: modulation of oxidative stress, nitric oxide and monocyte chemoattractant protein-1 expression. Atherosclerosis 187, 285-291. https://doi.org/10.1016/j.atherosclerosis.2005.09.016
  101. Weissenbach, M., Clahsen, T., Weber, C., Spitzer, D., Wirth, D., Vestweber, D., Heinrich, P. C. and Schaper, F. (2004). Interleukin-6 is a direct mediator of T cell migration. Eur. J. Immunol. 34, 2895-2906. https://doi.org/10.1002/eji.200425237
  102. Wung, B. S., Cheng, J. J., Hsieh, H. J., Shyy, Y. J. and Wang, D. L. (1997). Cyclic strain-induced monocyte chemotactic protein-1 gene expression in endothelial cells involves reactive oxygen species activation of activator protein 1. Circ. Res. 81, 1-7. https://doi.org/10.1161/01.RES.81.1.1
  103. Yla-Herttuala, S. (1992). Gene expression in atherosclerotic lesions. Hertz 17, 270-276.
  104. Yla-Herttuala, S., Lipton, B. A., Rosenfeld, M. E., Sarkioja, T., Yoshimura, T., Leonard, E. J., Witztum, J. L. and Steinberg, D. (1991). Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc. Natl. Acad. Sci. USA 88, 5252-5256. https://doi.org/10.1073/pnas.88.12.5252

Cited by

  1. 1,25(OH) 2 D 3 inhibits oxidative stress and monocyte adhesion by mediating the upregulation of GCLC and GSH in endothelial cells treated with acetoacetate (ketosis) vol.159, 2016, https://doi.org/10.1016/j.jsbmb.2016.03.002
  2. The Role of Dietary Inflammatory Index in Cardiovascular Disease, Metabolic Syndrome and Mortality vol.17, pp.8, 2016, https://doi.org/10.3390/ijms17081265
  3. Lymphocytic vasculitis of the prostate transition zone vol.110, pp.11, 2012, https://doi.org/10.1111/j.1464-410X.2012.11079.x
  4. Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses vol.2014, 2014, https://doi.org/10.1155/2014/352371
  5. Cellular and molecular mechanisms of inflammation-induced angiogenesis vol.67, pp.3, 2015, https://doi.org/10.1002/iub.1358
  6. The Pivotal Role of TBK1 in Inflammatory Responses Mediated by Macrophages vol.2012, 2012, https://doi.org/10.1155/2012/979105
  7. A focus on inflammation as a major risk factor for atherosclerotic cardiovascular diseases vol.14, pp.3, 2016, https://doi.org/10.1586/14779072.2016.1128828
  8. Magnesium lithospermate B mediates anti-inflammation targeting activator protein-1 and nuclear factor-kappa B signaling pathways in human peripheral T lymphocytes vol.13, pp.3, 2012, https://doi.org/10.1016/j.intimp.2012.04.011
  9. RETRACTED: Correlations between peroxisome proliferator activator receptor γ, Cystatin C, or advanced oxidation protein product, and atherosclerosis in diabetes patients vol.211, pp.3, 2015, https://doi.org/10.1016/j.prp.2014.11.006
  10. Lobaric Acid Inhibits VCAM-1 Expression in TNF-α-Stimulated Vascular Smooth Muscle Cells via Modulation of NF-κB and MAPK Signaling Pathways vol.24, pp.1, 2016, https://doi.org/10.4062/biomolther.2015.084
  11. Screening of Useful Plants with Anti-inflammatory and Antioxidant Activity vol.26, pp.4, 2013, https://doi.org/10.7732/kjpr.2013.26.4.441
  12. Higher circulating levels of chemokines CXCL10, CCL20 and CCL22 in patients with ischemic heart disease vol.83, 2016, https://doi.org/10.1016/j.cyto.2016.04.006
  13. Chrysin Attenuates VCAM-1 Expression and Monocyte Adhesion in Lipopolysaccharide-Stimulated Brain Endothelial Cells by Preventing NF-κB Signaling vol.18, pp.7, 2017, https://doi.org/10.3390/ijms18071424
  14. IL-4 Causes Hyperpermeability of Vascular Endothelial Cells through Wnt5A Signaling vol.11, pp.5, 2016, https://doi.org/10.1371/journal.pone.0156002
  15. Corosolic Acid Ameliorates Atherosclerosis in Apolipoprotein E-Deficient Mice by Regulating the Nuclear Factor-κB Signaling Pathway and Inhibiting Monocyte Chemoattractant Protein-1 Expression vol.76, pp.4, 2010, https://doi.org/10.1253/circj.cj-11-0344
  16. 삽주 육성품종 간 생육특성 및 유효성분 분석 vol.26, pp.3, 2010, https://doi.org/10.7783/kjmcs.2018.26.3.220
  17. A low-frequency IL4R locus variant in Japanese patients with intravenous immunoglobulin therapy-unresponsive Kawasaki disease vol.17, pp.1, 2019, https://doi.org/10.1186/s12969-019-0337-2
  18. Interleukin 4: Its Role in Hypertension, Atherosclerosis, Valvular, and Nonvalvular Cardiovascular Diseases vol.25, pp.1, 2010, https://doi.org/10.1177/1074248419868699
  19. Role of IL-4 in bone marrow driven dysregulated angiogenesis and age-related macular degeneration vol.9, pp.None, 2010, https://doi.org/10.7554/elife.54257
  20. Immune Responses of the Critically Endangered Yangtze Finless Porpoises ( Neophocaena asiaeorientalis ssp. asiaeorientalis ) to Escalating Anthropogenic Stressors in the Wild and Seminatural Environ vol.10, pp.None, 2020, https://doi.org/10.3389/fphys.2019.01594
  21. A single exposure to eucalyptus smoke sensitizes rats to the postprandial cardiovascular effects of a high carbohydrate oral load vol.32, pp.8, 2010, https://doi.org/10.1080/08958378.2020.1809572
  22. GAS5 knockdown suppresses inflammation and oxidative stress induced by oxidized low-density lipoprotein in macrophages by sponging miR-135a vol.476, pp.2, 2010, https://doi.org/10.1007/s11010-020-03962-w
  23. Tumor Necrosis Factor-Alpha and Interleukin-4 Levels in Patients With Idiopathic Sudden Sensorineural Hearing Loss vol.64, pp.9, 2010, https://doi.org/10.3342/kjorl-hns.2021.00059
  24. Vascular inflammation in moderate‐to‐severe atopic dermatitis is associated with enhanced Th2 response vol.76, pp.10, 2010, https://doi.org/10.1111/all.14859
  25. A Standardized Lindera obtusiloba Extract Improves Endothelial Dysfunction and Attenuates Plaque Development in Hyperlipidemic ApoE-Knockout Mice vol.10, pp.11, 2021, https://doi.org/10.3390/plants10112493
  26. Helminth infections and cardiovascular diseases: A role for the microbiota and Mϕs? vol.110, pp.6, 2010, https://doi.org/10.1002/jlb.5mr0721-786r
  27. Effect of docosahexaenoic acid plus insulin on atherosclerotic human endothelial cells vol.18, pp.1, 2010, https://doi.org/10.1186/s12950-021-00277-5