Browse > Article
http://dx.doi.org/10.4062/biomolther.2010.18.2.135

Interleukin-4, Oxidative Stress, Vascular Inflammation and Atherosclerosis  

Lee, Yong-Woo (Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University (Virginia Tech))
Kim, Paul H. (Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University (Virginia Tech))
Lee, Won-Hee (School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University (Virginia Tech))
Hirani, Anjali A. (School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University (Virginia Tech))
Publication Information
Biomolecules & Therapeutics / v.18, no.2, 2010 , pp. 135-144 More about this Journal
Abstract
The pro-oxidative and pro-inflammatory pathways in vascular endothelium have been implicated in the initiation and progression of atherosclerosis. In fact, inflammatory responses in vascular endothelium are primarily regulated through oxidative stress-mediated signaling pathways leading to overexpression of pro-inflammatory mediators. Enhanced expression of cytokines, chemokines and adhesion molecules in endothelial cells and their close interactions facilitate recruiting and adhering blood leukocytes to vessel wall, and subsequently stimulate transendothelial migration, which are thought to be critical early pathologic events in atherogenesis. Although interleukin-4 (IL-4) was traditionally considered as an anti-inflammatory cytokine, recent in vitro and in vivo studies have provided robust evidence that IL-4 exerts pro-inflammatory effects on vascular endothelium and may play a critical role in the development of atherosclerosis. The cellular and molecular mechanisms responsible for IL-4-induced atherosclerosis, however, remain largely unknown. The present review focuses on the distinct sources of IL-4-mediated reactive oxygen species (ROS) generation as well as the pivotal role of ROS in IL-4-induced vascular inflammation. These studies will provide novel insights into a clear delineation of the oxidative mechanisms of IL-4-mediated stimulation of vascular inflammation and subsequent development of atherosclerosis. It will also contribute to novel therapeutic approaches for atherosclerosis specifically targeted against pro-oxidative and pro-inflammatory pathways in vascular endothelium.
Keywords
IL-4; Reactive oxygen species; Inflammation; Vascular endothelium; Atherosclerosis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Barks, J. L., McQuillan, J. J. and Iademarco, F. (1997). $TNF-{\alpha}$ and IL-4 synergistically increase vascular cell adhesion molecule-1 expression in cultured vascular smooth muscle cells. J. Immunol. 159, 4532-4538.
2 Basta, G., Lazzerini, G., Del Turco, S., Ratto, G. M., Schmidt, A. M. and De Caterina, R. (2005). At least 2 distinct pathways generating reactive oxygen species mediate vascular cell adhesion molecule-1 induction by advanced glycation end products. Arterioscler. Thromb. Vasc. Biol. 25, 1401-1407.   DOI
3 Boring, L., Gosling, J., Cleary, M. and Charo, I. F. (1998). Decreased lesion formation in $CCR2^{−/−}$ mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894-897.   DOI
4 Bouloumie, A., Marumo, T., Lafontan, M. and Busse, R. (1999). Leptin induces oxidative stress in human endothelial cells. FASEB J. 13, 1231-1238.   DOI
5 Brandes, R. P. (2003). A radical adventure: The quest for specific functions and inhibitors of vascular NADPH oxidase. Circ. Res. 92, 583-585.   DOI
6 Braunersreuther, V., Mach, F. and Steffens, S. (2007). The specific role of chemokines in atherosclerosis. Thromb. Haemost. 97, 714-721.
7 Buono, C., Come, C. E., Stavrakis, G., Maguire, G. F., Connelly, P. W. and Lichtman, A. H. (2003). Influence of $interferon-{\gamma}$ on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 23, 454-460.   DOI
8 Bursill, C. A., Channon, K. M. and Greaves, D. R. (2004). The role of chemokines in atherosclerosis: recent evidence from experimental models and population genetics. Curr. Opin. Lipidol. 15, 145-149.   DOI
9 Chen, C. C. and Manning, A. M. (1996). $TGF-{\beta}1$, IL-10 and IL-4 differentially modulate the cytokine-induced expression of IL-6 and IL-8 in human endothelial cells. Cytokine 8, 58-65.   DOI   ScienceOn
10 Clark, L. T. (2002). Vascular inflammation as a therapeutic target for prevention of cardiovascular disease. Curr. Atheroscler. Rep. 4, 77-81.
11 Colotta, F., Sironi, M., Borre, A., Luini, W., Maddalena, F. and Mantovani, A. (1992). Interleukin 4 amplifies monocyte chemoattractant protein and interleukin 6 production by endothelial cells. Cytokine 4, 24-28.   DOI
12 Corda, S., Laplace, C., Vicaut, E. and Duranteau, J. (2001). Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis $factor-{\alpha}$ is mediated by ceramide. Am. J. Respir. Cell Mol. Biol. 24, 762-768.
13 Cybulsky, M. and Gimbrone, M. (1991). Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251, 788-791.   DOI
14 Blease, K., Seybold, J., Adcock, I. M., Hellewell, P. G. and Burke-Gaffney, A. (1998). Interleukin-4 and lipopolysaccharide synergize to induce vascular cell adhesion molecule-1 expression in human lung microvascular endothelial cells. Am. J. Respir. Cell Mol. Biol. 18, 620-630.   DOI   ScienceOn
15 Davies, M. J., Gordon, J. L., Gearing, A. J., Pigott, R., Woolf, N., Katz, D. and Kyriakopoulos, A. (1993). The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J. Pathol. 171, 223-229.   DOI
16 Cesari, M., Penninx, B. W., Newman, A. B., Kritchevsky, S. B., Nicklas, B. J., Sutton-Tyrrell, K., Tracy, R. P., Rubin, S. M., Harris, T. B. and Pahor, M. (2003). Inflammatory markers and cardiovascular disease (The Health, Aging and Body Composition [Health ABC] Study). Am. J. Cardiol. 92, 522-528.   DOI
17 Elices, M., Osborn, L., Takada, Y., Crouse, C., Luhowskyj, S., Hemler, M. and Lobb, R. (1990). VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 60, 577-584.   DOI
18 Galea, P., Lebranchu, Y., Thibault, G. and Bardos, P. (1992). Interleukin 4 and tumor necrosis factor ${\alpha}$ induce different adhesion pathways in endothelial cells for the binding of peripheral blood lymphocytes. Scand. J. Immunol. 36, 575-585.   DOI
19 Galea, P., Thibault, G., Lacord, M., Bardos, P. and Lebranchu Y. (1993). IL-4, but not tumor necrosis $factor-{\alpha}$, increases endothelial cell adhesiveness for lymphocytes by activating a cAMP-dependent pathway. J. Immunol. 151, 588-596.
20 Gosling, J., Slaymaker, S., Gu, L., Tseng, S., Zlot, C. H., Young, S. G., Rollins, B. J. and Charo, I. F. (1999). MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J. Clin. Invest. 103, 773-778.   DOI
21 Gu, L., Okada, Y., Clinton, S. K., Gerard, C., Sukhova, G. K., Libby, P. and Rollins, B. J. (1998). Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell 2, 275-281.   DOI
22 Gu, L., Tseng, S. C. and Rollins, B. J. (1999). Monocyte chemoattractant protein-1. Chem. Immunol. 72, 7-29.   DOI
23 Guzik, T. J. and Griendling, K. K. (2009). NADPH oxidases: Molecular understanding finally reaching the clinical level? Antioxid. Redox. Signal 11, 2365-2370.   DOI
24 Hong, H. Y., Lee, H. Y., Kwak, W., Yoo, J., Na, M. H., So, I. S., Kwon, T. H., Park, H. S., Huh, S., Oh, G. T., Kwon, I. C., Kim, I. S. and Lee, B. H. (2008). Phage display selection of peptides that home to atherosclerotic plaques: IL-4 receptor as a candidate target in atherosclerosis. J. Cell. Mol. Med. 12, 2003-2014.   DOI   ScienceOn
25 Guzik, T. J., Sadowski, J., Guzik, B., Jopek, A., Kapelak, B., Przybylowski, P., Wierzbicki, K., Korbut, R., Harrison, D. G. and Channon, K. M. (2006). Coronary artery superoxide production and nox isoform expression in human coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 26, 333-339.   DOI
26 Heitzer, T., Schlinzig, T., Krohn, K., Meinertz, T. and Munzel, T. (2001). Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104, 2673-2678.   DOI
27 Davenport, P. and Tipping, P. G. (2003). The role of interleukin- 4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am. J. Pathol. 163, 1117-1125.   DOI   ScienceOn
28 Huang, H., Lavoie-Lamoureux, A. and Lavoie, J. P. (2009). Cholinergic stimulation attenuates the IL-4 induced expression of E-selectin and vascular endothelial growth factor by equine pulmonary artery endothelial cells. Vet. Immunol. Immunopharmacol. 132, 116-121.   DOI
29 Huang, H., Lavoie-Lamoureux, A., Moran, K. and Lavoie, J. P. (2007). IL-4 stimulates the expression of CXCL-8, E-selectin, VEGF, and inducible nitric oxide synthase mRNA by equine pulmonary artery endothelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L1147-L1154.   DOI
30 Huber, S. A., Sakkinen, P., Conze, D., Hardin, N. and Tracy, R. (1999). Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 19, 2364-2367.   DOI   ScienceOn
31 Goettsch, C., Goettsch, W., Arsov, A., Hofbauer, L. C., Bornstein, S. R. and Morawietz, H. (2009). Long-term cyclic strain downregulates endothelial Nox4. Antioxid. Redox. Signal 11, 2385-2397.   DOI
32 Huo, Y., Hafezi-Moghadam, A. and Ley, K. (2000). Role of vascular cell adhesion molecule-1 and fibronectin connecting segment-1 in monocyte rolling and adhesion on early atherosclerotic lesions. Circ. Res. 87, 153-159.   DOI   ScienceOn
33 Huo, Y. and Ley, K. (2001). Adhesion molecules and atherogenesis. Acta. Physiol. Scand. 173, 35-43.   DOI
34 Iiyama, K., Hajra, L., Iiyama, M., Li, H., DiChiara, M., Medoff, B. D. and Cybulsky, M. I. (1999). Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ. Res. 85, 199-207.   DOI   ScienceOn
35 King, V. L., Szilvassy, S. J. and Daugherty, A. (2002). Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor-/-mice. Arterioscler. Thromb. Vasc. Biol. 22, 456-461.   DOI
36 Kirii, H., Niwa, T., Yamada, Y., Wada, H., Saito, K., Iwakura, Y., Asano, M., Moriwaki, H. and Seishima, M. (2003). Lack of $interleukin-1{\beta}$ decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 23, 656-660.   DOI
37 Kishikawa, H., Shimokama, T. and Watanabe, T. (1993). Localization of T lymphocytes and macrophages expressing IL-1, IL-2 receptor, IL-6 and TNF in human aortic intima: Role of cell mediated immunity in human atherogenesis. Virchows Arch. A. Pathol. Anat. Histopathol. 423, 433-442.   DOI
38 Kishimoto, T. (2005). Interleukin-6: From basic science to medicine-40 years in immunology. Annu. Rev. Immunol. 23, 1-21.   DOI
39 Lee, Y. W., Eum, S. Y., Nath, A. and Toborek, M. (2004a). Estrogen-mediated protection against HIV Tat protein-induced inflammatory pathways in human vascular endothelial cells. Cardiovasc. Res. 63, 139-148.   DOI
40 Lee, Y. W., Eum, S. Y., Chen, K. C., Hennig, B. and Toborek, M. (2004b). Gene expression profile in interleukin-4-stimulated human vascular endothelial cells. Mol. Med. 10, 19-27.   DOI
41 Hennig, B. and Chow, C. K. (1988). Lipid peroxidation and endothelial cell injury: implication in atherosclerosis. Free Radical Biol. Med. 4, 99-106.   DOI
42 Hennig, B., Toborek, M., McClain, C. J. and Diana, J. N. (1996). Nutritional implications in vascular endothelial cell metabolism. J. Am. Coll. Nutr. 15, 345-358.   DOI
43 Lee, Y. W., Kühn, H., Hennig, B., Neish, A. S. and Toborek, M. (2001a). IL-4-induced oxidative stress upregulates VCAM-1 gene expression in human endothelial cells. J. Mol. Cell. Cardiol. 33, 83-94.   DOI
44 Lee, Y. W., Kuhn, H., Hennig, B. and Toborek, M. (2000). IL-4 induces apoptosis of endothelial cells through the caspase-3-dependent pathway. FBES Lett. 485, 122-126.   DOI
45 Lee, Y. W., Kuhn, H., Kaiser, S., Hennig, B., Daugherty, A. and Toborek, M. (2001b). Interleukin-4 induces transcription of the 15-lipoxygenase-I gene in human endothelial cells. J. Lipid Res. 42, 783-791.
46 Lee, Y. W., Lee, W. H. and Kim, P. H. (2010a). Oxidative mechanisms of IL-4-induced IL-6 expression in vascular endothelium. Cytokine 49, 73-79.   DOI
47 Inoue, S., Egashira, K., Ni, W., Kitamoto, S., Usui, M., Otani, K., Ishibashi, M., Hiasa, K., Nishida, K. and Takeshita, A. (2002). Anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice. Circulation 106, 2700-2706.   DOI
48 Libby, P. and Galis, Z. S. (1995). Cytokines regulate genes involved in atherogenesis. Ann. N. Y. Acad. Sci. 748, 158-168.
49 Khan, B. V., Parthasarathy, S. S., Alexander, R. W. and Medford, R. M. (1995). Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J. Clin. Invest. 95, 1262-1270.   DOI
50 Li, H., Cybulsky, M. I., Gimbrone, M. A. Jr. and Libby, P. (1993). An atherogenic diet rapidly induces VCAM-1, a cytokineregulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler. Thromb. 13, 197-204.   DOI
51 Libby, P., Ridker, P. M. and Maseri, A. (2002). Inflammation and atherosclerosis. Circulation 105, 1135-1143.   DOI
52 Lumsden, A. B., Chen, C., Hughes, J. D., Kelly, A. B., Hanson, S. R. and Harker, L. A. (1997). Anti-VLA-4 antibody reduces intimal hyperplasia in the endarterectomized carotid artery in nonhuman primates. J. Vasc. Surg. 26, 87-93.   DOI
53 Lee, Y. W., Hennig, B. and Toborek, M. (2003). Redox-regulated mechanisms of IL-4-induced MCP-1 expression in human vascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 284, H185-H192.   DOI
54 Lee, Y. W. and Hirani, A. A. (2006). Role of interleukin-4 in atherosclerosis. Arch. Pharm. Res. 29, 1-15.   DOI
55 Lee, Y. W., Lee, W. H. and Kim, P. H. (2010b). Role of NADPH oxidase in interleukin-4-induced monocyte chemoattractant protein-1 expression in vascular endothelium. Inflamm. Res. In press [DOI: 10.1007/s00011-010-0187-3].   DOI
56 Paul, W. E. (1991). Interleukin-4: a prototypic immunoregulatory lymphokine. Blood 77, 1859-1870.
57 O’Brien, K. D., Allen, M. D., McDonald, T. O., Chait, A., Harlan, J. M., Fishbein, D., McCarty, J., Ferguson, M., Hudkins, K. and Benjamin, C. D. (1993). Vascular cell adhesion molecule- 1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J. Clin. Invest. 92, 945-951.   DOI
58 Oguchi, S., Dimayuga, P., Zhu, J., Chyu, K. Y., Yano, J., Shah, P. K., Nilsson, J. and Cercek, B. (2000). Monoclonal antibody against vascular cell adhesion molecule-1 inhibits neointimal formation after periadventitial carotid artery injury in genetically hypercholesterolemic mice. Arterioscler. Thromb. Vasc. Biol. 20, 1729-1736.   DOI   ScienceOn
59 Park, K. W., Baik, H. H. and Jin, B. K. (2008). Interleukin- 4-induced oxidative stress via microglial NADPH oxidase contributes to the death of hippocampal neurons in vivo. Curr. Aging Sci. 1, 192-201.   DOI   ScienceOn
60 Price, D. T. and Loscalzo, J. (1999). Cellular adhesion molecules and atherogenesis. Am. J. Med. 107, 85-97.
61 Reape, T. J. and Groot, P. H. (1999). Chemokines and atherosclerosis. Atherosclerosis 147, 213 -225.   DOI
62 Martinovic, I., Abegunewardene, N., Seul, M., Vosseler, M., Horstick, G., Buerke, M., Darius, H. and Lindemann, S. (2005). Elevated monocyte chemoattractant protein-1 serum levels in patients at risk for coronary artery disease. Circ. J. 69, 1484-1489.   DOI
63 Marx, N. and Grant, P. J. (2007). Endothelial dysfunction and cardiovascular disease - the lull before the storm. Diab. Vasc. Dis. Res. 4, 82-83.   DOI
64 Masinovsky, B., Urdal, D. and Gallatin, W. M. (1990). IL-4 acts synergistically with $IL-1{\beta}$ to promote lymphocyte adhesion to microvascular endothelium by induction of vascular cell adhesion molecule-1. J. Immunol. 145, 2886-2895.
65 Ohta, H., Wada, H., Niwa, T., Kirii, H., Iwamoto, N., Fujii, H., Saito, K., Sekikawa, K. and Seisima, M. (2005). Disruption of tumor necrosis $factor-{\alpha}$ gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis 180, 11-17.   DOI
66 Nakashima, Y., Raines, E. W., Plump, A. S., Breslow, J. L. and Ross, R. (1998). Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 18, 842-851.   DOI   ScienceOn
67 Nelken, N. A., Coughlin, S. R., Gordon, D. and Wilcox, J. N. (1991). Monocyte chemoattractant protein-1 in human atheromatous plaques. J. Clin. Invest. 88, 1121-1127.   DOI
68 Ni, W., Egashira, K., Kitamoto, S., Kataoka, C., Koyanagi, M., Inoue, S., Imaizumi, K., Akiyama, C., Nishida, K. I. and Takeshita, A. (2001). New anti-monocyte chemoattractant protein-1 gene therapy attenuates atherosclerosis in apolipoprotein E-knockout mice. Circulation 103, 2096-2101.   DOI   ScienceOn
69 Oltman, C. L., Kane, N. L., Miller, F. J. Jr., Spector, A. A., Weintraub, N. L. and Dellsperger, K. C. (2003). Reactive oxygen species mediate arachidonic acid-induced dilation in porcine coronary microvessels. Am. J. Physiol. Heart Circ. Physiol. 285, H2309-H2315.   DOI
70 Osborn, L., Hession, C., Tizard, R., Vassallo, C., Luhowskyj, S., Chi-Rosso, G. and Lobb, R. (1989). Direct expression cloning of vascular cell adhesion molecule 1, a cytokineinduced endothelial protein that binds to lymphocytes. Cell 59, 1203-1211.   DOI
71 Paleolog, E. M., Aluri, G. R. and Feldmann, M. (1992). Contrasting effects of interferon ${\gamma}$ and interleukin 4 on responses of human vascular endothelial cells to tumor necrosis factor ${\alpha}$. Cytokine 4, 470-478.   DOI
72 Rollins, B. J. (1997). Chemokines. Blood 90, 909-928.
73 Ridker, P. M., Hennekens, C. H., Buring, J. E. and Rifai, N. (2000a). C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 342, 836-843.   DOI
74 Ridker, P. M., Rifai, N., Stampfer, M. J. and Hennekens, C. H. (2000b). Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101, 1767-1772.   DOI   ScienceOn
75 Rocken, M., Racke, M. and Shevach, E. M. (1996). IL-4-induced immune deviation as antigen-specific therapy for inflammatory autoimmune disease. Immunol. Today 17, 225-231.   DOI
76 Rollins, B. J. and Pober, J. S. (1991). Interleukin-4 induces the synthesis and secretion of MCP-1/JE by human endothelial cells. Am. J. Pathol. 138, 1315-1319.
77 Ross, R. (1993). The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362, 801-809.   DOI   ScienceOn
78 Ross, R. (1999). Atherosclerosis is an inflammatory disease. Am. Heart J. 138, S419-S420.   DOI
79 Sakai, A., Kume, N., Nishi, E., Tanoue, K., Miyasaka, M. and Kita, T. (1997). P-selectin and vascular cell adhesion molecule-1 are focally expressed in aortas of hypercholesterolemic rabbits before intimal accumulation of macrophages and T lymphocytes. Arterioscler. Thromb. Vasc. Biol. 17, 310-316.   DOI   ScienceOn
80 Schleimer, R. P., Sterbinsky, S. A., Kaiser, J., Bickel, C. A., Klunk, D. A., Tomioka, K., Newman, W., Luscinskas, F. W., Gimbrone, M. A. Jr. and McIntyre, B. W. (1992). IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium. Association with expression of VCAM-1. J. Immunol. 148, 1086-1092.
81 Simmons, P. J., Masinovsky, B., Longenecker, B. M., Berenson, R., Torok-Storb, B. and Gallatin, W. M. (1992). Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoietic progenitor cells. Blood 80, 388-395.
82 Schuett, H., Luchtefeld, M., Grothusen, C., Grote, K. and Schieffer, B. (2009). How much is too much? Interleukin-6 and its signaling in atherosclerosis. Thromb. Haemost. 102, 215-222.
83 Sheikine, Y. A. and Hansson, G. K. (2006). Chemokines as potential therapeutic targets in atherosclerosis. Curr. Drug Targets 7, 13-27.   DOI
84 Shishehbor, M. H. and Bhatt, D. L. (2004). Inflammation and atherosclerosis. Curr. Atheroscler. Rep. 6, 131-139.   DOI
85 Sorescu, D., Weiss, D., Lassegue, B., Clempus, R. E., Szocs, K., Sorescu, G. P., Valppu, L., Quinn, M. T., Lambeth, J. D., Vega, J. D., Taylor, W. R. and Griendling, K. K. (2002). Superoxide production and expression of Nox family proteins in human atherosclerosis. Circulation 105, 1429-1435.   DOI
86 Srinivasan, S., Hatley, M. E., Reilly, K. B., Danziger, E. C. and Hedrick, C. C. (2004). Modulation of $PPAR{\alpha}$ expression and inflammatory interleukin-6 production by chronic glucose increases monocyte/endothelial adhesion. Arterioscler. Thromb. Vasc. Biol. 24, 851-857.   DOI
87 Strieter, R. M., Wiggins, R., Phan, S. H., Wharram, B. L., Showell, H. J., Remick, D. G., Chensue, S. W. and Kunkel, S. L. (1989). Monocyte chemotactic protein gene expression by cytokine-treated human fibroblasts and endothelial cells. Biochem. Biophys. Res. Commun. 162, 694-700.   DOI
88 Sukovich, D. A., Kauser, K., Shirley, F. D., DelVecchio, V., Halks-Miller, M. and Rubanyi, G. M. (1998). Expression of interleukin-6 in atherosclerotic lesions of male apoEknockout mice. Arterioscler. Thromb. Vasc. Biol. 18, 1498-1505.   DOI   ScienceOn
89 Seino, Y., Ikeda, U., Ikeda, M., Yamamoto, K., Misawa, Y., Hasegawa, T., Kano, S. and Shimada, K. (1994). Interleukin 6 gene transcripts are expressed in human atherosclerotic lesions. Cytokine 6, 87-91.   DOI
90 Yla-Herttuala, S. (1992). Gene expression in atherosclerotic lesions. Hertz 17, 270-276.
91 Taubman, M. B., Rollins, B. J., Poon, M., Marmur, J., Green, R. S., Berk, B. C. and Nadal-Ginard, B. (1992). JE mRNA accumulates rapidly in aortic injury and in platelet-derived growth factor-stimulated vascular smooth muscle cells. Circ. Res. 70, 314-325.   DOI   ScienceOn
92 Tedgui, A. and Mallat, Z. (2006). Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol. Rev. 86, 515-581.   DOI
93 Thomas, S. R., Witting, P. K. and Drummond, G. R. (2008). Redox control of endothelial function and dysfunction: Molecular mechanisms and therapeutic opportunities. Antioxid. Redox Signal. 10, 1713-1765.   DOI
94 Toborek, M. and Kaiser, S. (1999). Endothelial cell functions. Relationship to atherogenesis. Basic Res. Cardiol. 94, 295-314.   DOI
95 Walch, L., Massade, L., Dufilho, M., Brunet, A. and Rendu, F. (2006). Pro-atherogenic effect of interleukin-4 in endothelial cells: modulation of oxidative stress, nitric oxide and monocyte chemoattractant protein-1 expression. Atherosclerosis 187, 285-291.   DOI
96 Weissenbach, M., Clahsen, T., Weber, C., Spitzer, D., Wirth, D., Vestweber, D., Heinrich, P. C. and Schaper, F. (2004). Interleukin-6 is a direct mediator of T cell migration. Eur. J. Immunol. 34, 2895-2906.   DOI
97 Wung, B. S., Cheng, J. J., Hsieh, H. J., Shyy, Y. J. and Wang, D. L. (1997). Cyclic strain-induced monocyte chemotactic protein-1 gene expression in endothelial cells involves reactive oxygen species activation of activator protein 1. Circ. Res. 81, 1-7.   DOI   ScienceOn
98 Aiello, R. J., Bourassa, P. K., Lindsey, S., Weng, W., Natoli, E., Rollins, B. J. and Milos, P. M. (1999). Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 19, 1518-1525.   DOI   ScienceOn
99 Takeya, M., Yoshimura, T., Leonard, E. J. and Takahashi, K. (1993). Detection of monocyte chemoattractant protein-1 in human atherosclerotic lesions by an anti-monocyte chemoattractant protein-1 monoclonal antibody. Hum. Pathol. 24, 534-539.   DOI
100 Yla-Herttuala, S., Lipton, B. A., Rosenfeld, M. E., Sarkioja, T., Yoshimura, T., Leonard, E. J., Witztum, J. L. and Steinberg, D. (1991). Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc. Natl. Acad. Sci. USA 88, 5252-5256.   DOI
101 American Heart Association Statistics Committee and Stroke Statistics Subcommittee. (2010). Heart disease and stroke statistics - 2010 update. Circulation 121, e1-e170.   DOI
102 Bedard, K. and Krause, K. (2007). The NOX family of ROSgenerating NADPH oxidase: Physiology and Pathophysiology. Physiol. Rev. 87, 245-313.   DOI
103 Berliner, J. A., Navab, M., Fogelman, A. M., Frank, J. S., Demer, L. L., Edwards, P. A., Watson, A. D. and Lusis, A. J. (1995). Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 91, 2488-2496.   DOI   ScienceOn
104 Blankenberg, S., Barbaux, S. and Tiret, L. (2003). Adhesion molecules and atherosclerosis. Atherosclerosis 170, 191-203.   DOI