DOI QR코드

DOI QR Code

Hypoxia Induces Paclitaxel-Resistance through ROS Production

  • Oh, Jin-Mi (Department of Bioscience and Biotechnology, Sejong University) ;
  • Ryu, Yun-Kyoung (Department of Bioscience and Biotechnology, Sejong University) ;
  • Lim, Jong-Seok (Department of Biological Sciences, Sookmyung Women's University) ;
  • Moon, Eun-Yi (Department of Bioscience and Biotechnology, Sejong University)
  • Received : 2010.01.27
  • Accepted : 2010.02.24
  • Published : 2010.04.30

Abstract

Oxygen supply into inside solid tumor is often diminished, which is called hypoxia. Many gene transcriptions were activated by hypoxia-inducible factor (HIF)-$1{\alpha}$. Here, we investigated the effect of hypoxia on paclitaxel-resistance induction in HeLa cervical tumor cells. When HeLa cells were incubated under hypoxia condition, HIF-$1{\alpha}$ level was increased. In contrast, paclitaxel-mediated tumor cell death was reduced by the incubation under hypoxia condition. Paclitaxel-mediated tumor cell death was also inhibited by treatment with DMOG, chemical HIF-$1{\alpha}$ stabilizer, in a dose-dependent manner. A significant increase in intracellular ROS level was detected by the incubation under hypoxia condition. A basal level of cell density was increased in response to 10 nM $H_2O_2$. HIF-$1{\alpha}$ level was increased by treatment with various concentration of $H_2O_2$. The increased level of HIF-$1{\alpha}$ by hypoxia was reduced by the treatment with N-acetylcysteine (NAC), a well-known ROS scavenger. Paclitaxel-mediated tumor cell death was increased by treatment with NAC. Taken together, these findings demonstrate that hypoxia could play a role in paclitaxel-resistance induction through ROS-mediated HIF-$1{\alpha}$ stabilization. These results suggest that hypoxia-induced ROS could, in part, control tumor cell death through an increase in HIF-$1{\alpha}$ level.

Keywords

References

  1. Belaiba, R. S., Bonello, S., Zahringer, C., Schmidt, S., Hess, J., Kietzmann, T. and Gorlach, A. (2007). Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol. Biol. Cell 18, 4691-4697. https://doi.org/10.1091/mbc.E07-04-0391
  2. Brunelle, J. K., Bell, E. L., Quesada, N. M., Vercauteren, K., Tiranti, V., Zeviani, M., Scarpulla, R. C. and Chandel, N. S. (2005). Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab. 1, 409-414. https://doi.org/10.1016/j.cmet.2005.05.002
  3. Chan, D. A., Krieg, A. J., Turcotte, S. and Giaccia, A. J. (2007). HIF gene expression in cancer therapy. Methods Enzymol. 435, 323-345. https://doi.org/10.1016/S0076-6879(07)35016-7
  4. Chandel, N. S., Maltepe, E., Goldwasser, E., Mathieu, C. E., Simon, M. C. and Schumacker, P. T. (1998). Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. U. S. A. 95, 11715-11720. https://doi.org/10.1073/pnas.95.20.11715
  5. Denizot, F. and Lang, R. (1986). Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 89, 271-277. https://doi.org/10.1016/0022-1759(86)90368-6
  6. Dong, J. E. H. and Shin, C. Y. (2008). Vasorelaxing effect of hypoxia via Rho-kinase inhibition on the agonist-specific vasoconstriction. Biomol. & Ther. 16, 249-254. https://doi.org/10.4062/biomolther.2008.16.3.249
  7. Folkman, J. (1990). What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst. 82, 4-6. https://doi.org/10.1093/jnci/82.1.4
  8. Gao, N., Shen, L., Zhang, Z., Leonard, S. S., He, H., Zhang, X. G., Shi, X. and Jiang, B. H. (2004). Arsenite induces HIF-1alpha and VEGF through PI3K, Akt and reactive oxygen species in DU145 human prostate carcinoma cells. Mol. Cell Biochem. 255, 33-45. https://doi.org/10.1023/B:MCBI.0000007259.65742.16
  9. Guzy, R. D., Hoyos, B., Robin, E., Chen, H., Liu, L., Mansfield, K. D., Simon, M. C., Hammerling, U. and Schumacker, P. T. (2005). Mitochondrial complex III is required for hypoxiainduced ROS production and cellular oxygen sensing. Cell Metab. 1, 401-408. https://doi.org/10.1016/j.cmet.2005.05.001
  10. Guzy, R. D., Sharma, B., Bell, E., Chandel, N. S. and Schumacker, P. T. (2008). Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen speciesdependent hypoxia-inducible factor activation and tumorigenesis. Mol. Cell Biol. 28, 718-731. https://doi.org/10.1128/MCB.01338-07
  11. Han, Y. H., Kwon, J. H., Yu, D. Y. and Moon, E. Y. (2006). Inhibitory effect of peroxiredoxin II (Prx II) on Ras-ERK-NFkappaB pathway in mouse embryonic fibroblast (MEF) senescence. Free Radic. Res. 40, 1182-1189. https://doi.org/10.1080/10715760600868552
  12. Hockel, M. and Vaupel, P. (2001). Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst. 93, 266-276. https://doi.org/10.1093/jnci/93.4.266
  13. Horwitz, S. B. (1994). Taxol (paclitaxel): mechanisms of action. Ann. Oncol. 5(Suppl 6), S3-6. https://doi.org/10.1093/annonc/5.suppl_4.S3
  14. Huang, L. E., Gu, J., Schau, M. and Bunn, H. F. (1998). Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. U. S. A. 95, 7987- 7992. https://doi.org/10.1073/pnas.95.14.7987
  15. Janssen-Heininger, Y. M., Poynter, M. E. and Baeuerle, P. A. (2000). Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic. Biol. Med. 28, 1317-1327. https://doi.org/10.1016/S0891-5849(00)00218-5
  16. Jung, Y. J., Isaacs, J. S., Lee, S., Trepel, J. and Neckers, L. (2003). Microtubule disruption utilizes an NFkappa B-dependent pathway to stabilize HIF-1alpha protein. J. Biol. Chem. 278, 7445-7452. https://doi.org/10.1074/jbc.M209804200
  17. Kaelin, W. G. Jr. (2005). ROS: really involved in oxygen sensing. Cell Metab. 1, 357-358. https://doi.org/10.1016/j.cmet.2005.05.006
  18. Ke, Q. and Costa, M. (2006). Hypoxia-inducible factor-1 (HIF-1). Mol. Pharmacol. 70, 1469-1480. https://doi.org/10.1124/mol.106.027029
  19. Kim, H. S. and Moon, E. Y. (2009). Reactive oxygen species-induced expression of B cell activating factor (BAFF) is independent of toll-like receptor 4 and myeloid differentiation primary response gene 88. Biomol. & Ther. 17, 144-150. https://doi.org/10.4062/biomolther.2009.17.2.144
  20. Kim, H. S., Oh, J. M., Jin, D. H., Yang, K. H. and Moon, E. Y. (2008). Paclitaxel induces vascular endothelial growth factor expression through reactive oxygen species production. Pharmacology 81, 317-324. https://doi.org/10.1159/000119756
  21. Liu, L. Z., Hu, X. W., Xia, C., He, J., Zhou, Q., Shi, X., Fang, J. and Jiang, B. H. (2006). Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1alpha expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic. Biol. Med. 41, 1521-1533. https://doi.org/10.1016/j.freeradbiomed.2006.08.003
  22. Mansfield, K. D., Guzy, R. D., Pan, Y., Young, R. M., Cash, T. P., Schumacker, P. T. and Simon, M. C. (2005). Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab. 1, 393-399. https://doi.org/10.1016/j.cmet.2005.05.003
  23. Martin, V. (1993). Overview of paclitaxel (TAXOL). Semin. Oncol. Nurs. 9, 2-5. https://doi.org/10.1016/S0749-2081(16)30035-3
  24. Maulik, N. and Das, D. K. (2002). Redox signaling in vascular angiogenesis. Free Radic. Biol. Med. 33, 1047-1060. https://doi.org/10.1016/S0891-5849(02)01005-5
  25. Moon, E. Y. (2008). Serum deprivation enhances apoptoticcell death by increasing mitochondrial enzyme aActivity. Biomol. & Ther. 16, 1-8. https://doi.org/10.4062/biomolther.2008.16.1.001
  26. Oh, J. M., Ryoo, I. J., Yang, Y., Kim, H. S., Yang, K. H. and Moon, E. Y. (2008). Hypoxia-inducible transcription factor (HIF)-1 alpha stabilization by actin-sequestering protein, thymosin beta-4 (TB4) in Hela cervical tumor cells. Cancer Lett. 264, 29-35. https://doi.org/10.1016/j.canlet.2008.01.004
  27. Oh, S. Y., Song, J. H., Gil, J. E., Kim, J. H., Yeom, Y. I. and Moon, E. Y. (2006). ERK activation by thymosin-beta-4 (TB4) overexpression induces paclitaxel-resistance. Exp. Cell Res. 312, 1651-1657. https://doi.org/10.1016/j.yexcr.2006.01.030
  28. Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. and Denko, N. C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187-197. https://doi.org/10.1016/j.cmet.2006.01.012
  29. Rowinsky, E. K., Onetto, N., Canetta, R. M. and Arbuck, S. G. (1992). Taxol: the first of the taxanes, an important new class of antitumor agents. Semin. Oncol. 19, 646-662.
  30. Salceda, S. and Caro, J. (1997). Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 272, 22642-22647. https://doi.org/10.1074/jbc.272.36.22642
  31. Selvendiran, K., Bratasz, A., Kuppusamy, M. L., Tazi, M. F., Rivera, B. K. and Kuppusamy, P. (2009). Hypoxia induces chemoresistance in ovarian cancer cells by activation of signal transducer and activator of transcription 3. Int. J. Cancer 125, 2198-2204. https://doi.org/10.1002/ijc.24601
  32. Semenza, G. L. (2000). HIF-1: using two hands to flip the angiogenic switch. Cancer Metastasis Rev. 19, 59-65. https://doi.org/10.1023/A:1026544214667
  33. Simon, M. C. (2006). Coming up for air: HIF-1 and mitochondrial oxygen consumption. Cell Metab. 3, 150-151. https://doi.org/10.1016/j.cmet.2006.02.007
  34. Toledano, M. B. and Leonard, W. J. (1991). Modulation of transcription factor NF-kappa B binding activity by oxidation-reduction in vitro. Proc. Natl. Acad. Sci. U. S. A. 88, 4328-4332. https://doi.org/10.1073/pnas.88.10.4328
  35. Wang, G. L., Jiang, B. H., Rue, E. A. and Semenza, G. L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. U. S. A. 92, 5510-5514. https://doi.org/10.1073/pnas.92.12.5510
  36. Zhong, H., De Marzo, A. M., Laughner, E., Lim, M., Hilton, D. A., Zagzag, D., Buechler, P., Isaacs, W. B., Semenza, G. L. and Simons, J. W. (1999). Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 59, 5830-5835.
  37. Zhou, Q., Liu, L. Z., Fu, B., Hu, X., Shi, X., Fang, J. and Jiang, B. H. (2007). Reactive oxygen species regulate insulin-induced VEGF and HIF-1alpha expression through the activation of p70S6K1 in human prostate cancer cells. Carcinogenesis 28, 28-37. https://doi.org/10.1093/carcin/bgl085

Cited by

  1. Protein kinase C stimulates human B cell activating factor gene expression through reactive oxygen species-dependent c-Fos in THP-1 pro-monocytic cells vol.59, pp.1, 2012, https://doi.org/10.1016/j.cyto.2012.03.017
  2. Hyperoside protects primary rat cortical neurons from neurotoxicity induced by amyloid β-protein via the PI3K/Akt/Bad/BclXL-regulated mitochondrial apoptotic pathway vol.672, pp.1-3, 2011, https://doi.org/10.1016/j.ejphar.2011.09.177
  3. Evaluation of interstitial protein delivery in multicellular layers model vol.35, pp.3, 2012, https://doi.org/10.1007/s12272-012-0317-2
  4. Regulation of glycogen synthase kinase-3 by thymosin beta-4 is associated with gastric cancer cell migration vol.131, pp.9, 2012, https://doi.org/10.1002/ijc.27490
  5. The Actin-Sequestering Protein Thymosin Beta-4 Is a Novel Target of Hypoxia-Inducible Nitric Oxide and HIF-1α Regulation vol.9, pp.10, 2014, https://doi.org/10.1371/journal.pone.0106532
  6. Mouse Melanoma Cell Migration is Dependent on Production of Reactive Oxygen Species under Normoxia Condition vol.20, pp.2, 2012, https://doi.org/10.4062/biomolther.2012.20.2.165
  7. Thymosin Beta-4, Actin-Sequestering Protein Regulates Vascular Endothelial Growth Factor Expression via Hypoxia-Inducible Nitric Oxide Production in HeLa Cervical Cancer Cells vol.23, pp.1, 2015, https://doi.org/10.4062/biomolther.2014.101
  8. modified Abraxane to inhibit the growth and metastasis of triple-negative breast cancer pp.2047-4849, 2019, https://doi.org/10.1039/C8BM00753E
  9. Novel “Carrier-Free” Nanofiber Codelivery Systems with the Synergistic Antitumor Effect of Paclitaxel and Tetrandrine through the Enhancement of Mitochondrial Apoptosis vol.12, pp.9, 2010, https://doi.org/10.1021/acsami.9b17363