References
- Baccarelli, A. and Bollati, V. (2009). Epigenetics and environmental chemicals. Curr. Opin. Pediatr. 21, 243-251. https://doi.org/10.1097/MOP.0b013e32832925cc
- Bardo, M. T. (1998). Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens. Crit. Rev. Neurobiol. 12, 37-67. https://doi.org/10.1615/CritRevNeurobiol.v12.i1-2.30
- Bartus, R. T., Dean, R. L. 3rd, Beer, B. and Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science 217, 408-414. https://doi.org/10.1126/science.7046051
- Bayer, S. A., Wills, K. V., Triarhou, L. C. and Ghetti, B. (1995). Time of neuron origin and gradients of neurogenesis in midbrain dopaminergic neurons in the mouse. Exp. Brain Res. 105, 191-199.
- Bindhumol, V., Chitra, K. C. and Mathur, P. P. (2003). Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology 188, 117-124. https://doi.org/10.1016/S0300-483X(03)00056-8
- Brailoiu, E., Dun, S. L., Brailoiu, G. C., Mizuo, K., Sklar, L. A., Oprea, T. I., Prossnitz, E. R. and Dun, N. J. (2007). Distribution and characterization of estrogen receptor G proteincoupled receptor 30 in the rat central nervous system. J. Endocrinol. 193, 311-321. https://doi.org/10.1677/JOE-07-0017
- Bromer, J. G., Zhou, Y., Taylor, M. B., Doherty, L. and Taylor, H. S. (2010). Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J. 24 (published online Feb 24)
- Devoto, P., Collu, M., Muntoni, A. L., Pistis, M., Serra, G., Gessa, G. L. and Diana, M. (1995). Biochemical and electrophysiological effects of 7-OH-DPAT on the mesolimbic dopaminergic system. Synapse 20, 153-155. https://doi.org/10.1002/syn.890200209
- Dolinoy, D. C., Huang, D. and Jirtle, R. L. (2007). Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc. Natl. Acad. Sci. U. S. A. 104, 13056-13061. https://doi.org/10.1073/pnas.0703739104
- Dutar, P., Bassant, M. H., Senut, M. C. and Lamour, Y. (1995). The septohippocampal pathway: structure and function of a central cholinergic system. Physiol. Rev. 75, 393-427. https://doi.org/10.1152/physrev.1995.75.2.393
- Farabollini, F., Porrini, S., Della Seta, D., Bianchi, F. and Dessi- Fulgheri, F. (2002). Effects of perinatal exposure to bisphenol A on sociosexual behavior of female and male rats. Environ. Health Perspect. 110 (Suppl 3), 409-414. https://doi.org/10.1289/ehp.02110s3409
- Fellin, T. and Carmignoto, G. (2004). Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit. J. Physiol. 559, 3-15. https://doi.org/10.1113/jphysiol.2004.063214
- Gaido, K. W., Leonard, L. S., Lovell, S., Gould, J. C., Babai, D., Portier, C. J. and McDonnell, D. P. (1997). Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicol. Appl. Pharmacol. 143, 205-212. https://doi.org/10.1006/taap.1996.8069
- Hammond, R., Blaess, S. and Abeliovich, A. (2009). Sonic hedgehog is a chemoattractant for midbrain dopaminergic axons. PLoS One 4, e7007. https://doi.org/10.1371/journal.pone.0007007
- Haydon, P. G. (2001). GLIA: listening and talking to the synapse. Nat. Rev. Neurosci. 2, 185-193. https://doi.org/10.1038/35058528
- Ho, S. M., Tang, W. Y., Belmonte de Frausto, J. and Prins, G. S. (2006). Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 66, 5624-5632. https://doi.org/10.1158/0008-5472.CAN-06-0516
- Howdeshell, K. L., Hotchkiss, A. K., Thayer, K. A., Vandenbergh, J. G. and vom Saal, F. S. (1999). Exposure to bisphenol A advances puberty. Nature 401, 763-764. https://doi.org/10.1038/44517
- Inoue, K., Kato, K., Yoshimura, Y., Makino, T. and Nakazawa, H. (2000). Determination of bisphenol A in human serum by high-performance liquid chromatography with multi-electrode electrochemical detection. J. Chromatogr. B. Biomed. Sci. Appl. 749, 17-23. https://doi.org/10.1016/S0378-4347(00)00351-0
-
Jin, L. Q., Goswami, S., Cai, G., Zhen, X. and Friedman, E. (2003). SKF83959 selectively regulates phosphatidylinositollinked
$D_1$ dopamine receptors in rat brain. J. Neurochem. 85, 378-386. https://doi.org/10.1046/j.1471-4159.2003.01698.x - Kabuto, H., Hasuike, S., Minagawa, N. and Shishibori, T. (2003). Effects of bisphenol A on the metabolisms of active oxygen species in mouse tissues. Environ. Res. 93, 31-35. https://doi.org/10.1016/S0013-9351(03)00062-8
- Kholodilov, N., Yarygina, O., Oo, T. F., Zhang, H., Sulzer, D., Dauer, W. and Burke, R. E. (2004). Regulation of the development of mesencephalic dopaminergic systems by the selective expression of glial cell line-derived neurotrophic factor in their targets. J. Neurosci. 24, 3136-3146. https://doi.org/10.1523/JNEUROSCI.4506-03.2004
-
Koeltzow, T. E., Xu, M., Cooper, D. C., Hu, X. T., Tonegawa, S., Wolf, M. E. and White, F. J. (1998). Alterations in dopamine release but not dopamine autoreceptor function in dopamine
$D_3$ receptor mutant mice. J. Neurosci. 18, 2231-2238. - Koob, G. F. (1992). Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol. Sci. 13, 177-184. https://doi.org/10.1016/0165-6147(92)90060-J
- Kubo, K., Arai, O., Ogata, R., Omura, M., Hori, T. and Aou, S. (2001). Exposure to bisphenol A during the fetal and suckling periods disrupts sexual differentiation of the locus coeruleus and of behavior in the rat. Neurosci. Lett. 304, 73-76. https://doi.org/10.1016/S0304-3940(01)01760-8
- Lee, S., Suk, K., Kim, I. K., Jang, I. S., Park, J. W., Johnson, V. J., Kwon, T. K., Choi, B. J. and Kim, S. H. (2008). Signaling pathways of bisphenol A-induced apoptosis in hippocampal neuronal cells: role of calcium-induced reactive oxygen species, mitogen-activated protein kinases, and nuclear factorkappaB. J. Neurosci. Res. 86, 2932-2942. https://doi.org/10.1002/jnr.21739
- Lee, S. H., Lumelsky, N., Studer, L., Auerbach, J. M. and McKay, R. D. (2000). Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675-679. https://doi.org/10.1038/76536
-
Lee, S. H. and Mouradian, M. M. (1999). Up-regulation of
$D_{1A}$ dopamine receptor gene transcription by estrogen. Mol. Cell. Endocrinol. 156, 151-157. https://doi.org/10.1016/S0303-7207(99)00133-1 -
Levant, B. (1997). The
$D_3$ dopamine receptor: neurobiology and potential clinical relevance. Pharmacol. Rev. 49, 231-252. - Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S. and Collins, F. (1993). GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130-1132. https://doi.org/10.1126/science.8493557
- Marti, J., Wills, K. V., Ghetti, B. and Bayer, S. A. (2002). A combined immunohistochemical and autoradiographic method to detect midbrain dopaminergic neurons and determine their time of origin. Brain. Res. Brain. Res. Protoc. 9, 197-205. https://doi.org/10.1016/S1385-299X(02)00145-9
- Miyagawa, K., Narita, M., Akama, H. and Suzuki, T. (2007a). Memory impairment associated with a dysfunction of the hippocampal cholinergic system induced by prenatal and neonatal exposures to bisphenol-A. Neurosci. Lett. 418, 236-241. https://doi.org/10.1016/j.neulet.2007.01.088
- Miyagawa, K., Narita, M., Niikura, K., Akama, H., Tsurukawa, Y. and Suzuki, T. (2007b). Changes in central dopaminergic systems with the expression of Shh or GDNF in mice perinatally exposed to bisphenol-A. Nihon Shinkei Seishin Yakurigaku Zasshi 27, 69-75.
- Miyamoto, M., Kato, J., Narumi, S. and Nagaoka, A. (1987). Characteristics of memory impairment following lesioning of the basal forebrain and medial septal nucleus in rats. Brain Res. 419, 19-31. https://doi.org/10.1016/0006-8993(87)90564-6
- Miyatake, M., Miyagawa, K., Mizuo, K., Narita, M. and Suzuki, T. (2006). Dynamic changes in dopaminergic neurotransmission induced by a low concentration of bisphenol-A in neurones and astrocytes. J. Neuroendocrinol. 18, 434-444. https://doi.org/10.1111/j.1365-2826.2006.01434.x
- Mizuo, K., Narita, M., Miyagawa, K., Okuno, E. and Suzuki, T. (2004a). Prenatal and neonatal exposure to bisphenol-A affects the morphine-induced rewarding effect and hyperlocomotion in mice. Neurosci. Lett. 356, 95-98. https://doi.org/10.1016/j.neulet.2003.11.027
-
Mizuo, K., Narita, M., Miyatake, M. and Suzuki, T. (2004b). Enhancement of dopamine-induced signaling responses in the forebrain of mice lacking dopamine
$D_3$ receptor. Neurosci. Lett. 358, 13-16. https://doi.org/10.1016/j.neulet.2003.12.119 - Mizuo, K., Narita, M., Yoshida, T. and Suzuki, T. (2004c). Functional changes in dopamine D3 receptors by prenatal and neonatal exposure to an endocrine disruptor bisphenol-A in mice. Addict Biol. 9, 19-25. https://doi.org/10.1080/13556210410001674059
- Moriyama, K., Tagami, T., Akamizu, T., Usui, T., Saijo, M., Kanamoto, N., Hataya, Y., Shimatsu, A., Kuzuya, H. and Nakao, K. (2002). Thyroid hormone action is disrupted by bisphenol A as an antagonist. J. Clin. Endocrinol. Metab. 87, 5185-5190. https://doi.org/10.1210/jc.2002-020209
- Nakagawa, Y. and Tayama, S. (2000). Metabolism and cytotoxicity of bisphenol A and other bisphenols in isolated rat hepatocytes. Arch. Toxicol. 74, 99-105. https://doi.org/10.1007/s002040050659
- Narita, M., Funada, M. and Suzuki, T. (2001). Regulations of opioid dependence by opioid receptor types. Pharmacol. Ther. 89, 1-15. https://doi.org/10.1016/S0163-7258(00)00099-1
- Narita, M., Miyagawa, K., Mizuo, K., Yoshida, T. and Suzuki, T. (2006). Prenatal and neonatal exposure to low-dose of bisphenol-A enhance the morphine-induced hyperlocomotion and rewarding effect. Neurosci. Lett. 402, 249-252. https://doi.org/10.1016/j.neulet.2006.04.014
- Narita, M., Miyagawa, K., Mizuo, K., Yoshida, T. and Suzuki, T. (2007). Changes in central dopaminergic systems and morphine reward by prenatal and neonatal exposure to bisphenol-A in mice: evidence for the importance of exposure period. Addict Biol. 12, 167-172. https://doi.org/10.1111/j.1369-1600.2007.00048.x
-
Narita, M., Mizuo, K., Mizoguchi, H., Sakata, M., Tseng, L. F. and Suzuki, T. (2003). Molecular evidence for the functional role of dopamine
$D_3$ receptor in the morphine-induced rewarding effect and hyperlocomotion. J. Neurosci. 23, 1006-1012. - Ooe, H., Taira, T., Iguchi-Ariga, S. M. and Ariga, H. (2005). Induction of reactive oxygen species by bisphenol A and abrogation of bisphenol A-induced cell injury by DJ-1. Toxicol. Sci. 88, 114-126. https://doi.org/10.1093/toxsci/kfi278
-
Pacheco, M. A. and Jope, R. S. (1997). Comparison of
$[^3H]$ phosphatidylinositol and$[^3H]$ phosphatidylinositol 4,5-bisphosphate hydrolysis in postmortem human brain membranes and characterization of stimulation by dopamine D1 receptors. J. Neurochem. 69, 639-644. - Riddle, R. and Pollock, J. D. (2003). Making connections: the development of mesencephalic dopaminergic neurons. Brain Res. Dev. Brain Res. 147, 3-21. https://doi.org/10.1016/j.devbrainres.2003.09.010
-
Schwartz, J. C., Diaz, J., Bordet, R., Griffon, N., Perachon, S., Pilon, C., Ridray, S. and Sokoloff, P. (1998). Functional implications of multiple dopamine receptor subtypes: the
$D_1/D_3$ receptor coexistence. Brain Res. Brain Res. Rev. 26, 236-242. https://doi.org/10.1016/S0165-0173(97)00046-5 - Sigmundson, H. K. (1994). Pharmacotherapy of schizophrenia: a review. Can. J. Psychiatry 39, S70-75.
- Smidt, M. P., Smits, S. M. and Burbach, J. P. (2003). Molecular mechanisms underlying midbrain dopamine neuron development and function. Eur. J. Pharmacol. 480, 75-88. https://doi.org/10.1016/j.ejphar.2003.08.094
-
Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. and Schwartz, J. C. (1990). Molecular cloning and characterization of a novel dopamine receptor
$(D_3)$ as a target for neuroleptics. Nature 347, 146-151. https://doi.org/10.1038/347146a0 - Surmeier, D. J., Eberwine, J., Wilson, C. J., Cao, Y., Stefani, A. and Kitai, S. T. (1992). Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc. Natl. Acad. Sci. U. S. A. 89, 10178-10182. https://doi.org/10.1073/pnas.89.21.10178
- Suzuki, T. (1996). Conditioned place preference in mice. Meth. Find. Exp. Clin. Pharmacol. 18, 75-83.
-
Suzuki, T., Mizuo, K., Nakazawa, H., Funae, Y., Fushiki, S., Fukushima, S., Shirai, T. and Narita, M. (2003). Prenatal and neonatal exposure to bisphenol-A enhances the central dopamine
$D_1$ receptor-mediated action in mice: enhancement of the methamphetamine-induced abuse state. Neuroscience 117, 639-644. https://doi.org/10.1016/S0306-4522(02)00935-1 -
Takeuchi, Y., Fukunaga, K. and Miyamoto, E. (2002). Activation of nuclear
$Ca^{2+}$ /calmodulin-dependent protein kinase II and brain-derived neurotrophic factor gene expression by stimulation of dopamine D2 receptor in transfected NG108- 15 cells. J. Neurochem. 82, 316-328. https://doi.org/10.1046/j.1471-4159.2002.00967.x - Temple, S. (2001). The development of neural stem cells. Nature 414, 112-117. https://doi.org/10.1038/35102174
- Voorn, P., Kalsbeek, A., Jorritsma-Byham, B. and Groenewegen, H. J. (1988). The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25, 857-887. https://doi.org/10.1016/0306-4522(88)90041-3
- Wallen, A., Zetterstrom, R. H., Solomin, L., Arvidsson, M., Olson, L. and Perlmann, T. (1999). Fate of mesencephalic AHD2-expressing dopamine progenitor cells in NURR1 mutant mice. Exp. Cell Res. 253, 737-746. https://doi.org/10.1006/excr.1999.4691
- Xiao, Q., Castillo, S. O. and Nikodem, V. M. (1996). Distribution of messenger RNAs for the orphan nuclear receptors Nurr1 and Nur77 (NGFI-B) in adult rat brain using in situ hybridization. Neuroscience 75, 221-230. https://doi.org/10.1016/0306-4522(96)00159-5
- Yaoi, T., Itoh, K., Nakamura, K., Ogi, H., Fujiwara, Y. and Fushiki, S. (2008). Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A. Biochem. Biophys. Res. Commun. 376, 563-567. https://doi.org/10.1016/j.bbrc.2008.09.028
- Zetterstrom, R. H., Solomin, L., Mitsiadis, T., Olson, L. and Perlmann, T. (1996). Retinoid X receptor heterodimerization and developmental expression distinguish the orphan nuclear receptors NGFI-B, Nurr1, and Nor1. Mol. Endocrinol. 10, 1656-1666. https://doi.org/10.1210/me.10.12.1656
- Zhu, W. H., Conforti, L. and Millhorn, D. E. (1997). Expression of dopamine D2 receptor in PC-12 cells and regulation of membrane conductances by dopamine. Am. J. Physiol. 273, C1143-1150. https://doi.org/10.1152/ajpcell.1997.273.4.C1143
Cited by
- Differential effects of bisphenol A toxicity on oyster ( Crassostrea angulata ) gonads as revealed by label-free quantitative proteomics vol.176, 2017, https://doi.org/10.1016/j.chemosphere.2017.02.146
- Distribution of bisphenol-A, triclosan and n-nonylphenol in human adipose tissue, liver and brain vol.87, pp.7, 2012, https://doi.org/10.1016/j.chemosphere.2012.01.002
- Application of Molecular Imprinted Polymers for Selective Solid Phase Extraction of Bisphenol A vol.23, pp.4, 2016, https://doi.org/10.1515/eces-2016-0046
- 1H-NMR-based metabolomic studies of bisphenol A in zebrafish (Danio rerio) vol.52, pp.4, 2017, https://doi.org/10.1080/03601234.2016.1273009
- Bisphenol A depresses monosynaptic and polysynaptic reflexes in neonatal rat spinal cord in vitro involving estrogen receptor-dependent NO-mediated mechanisms vol.289, 2015, https://doi.org/10.1016/j.neuroscience.2015.01.010