멀티레벨 셀을 가지는 PoRAM의 센싱 기법

A Sensing Method of PoRAM with Multilevel Cell

  • 이종훈 (한양대학교 나노반도체공학과) ;
  • 김정하 (한양대학교 전자컴퓨터통신공학과) ;
  • 이상선 (한양대학교 전자컴퓨터통신공학과)
  • Lee, Jong-Hoon (Department of Nanoscale Semiconductor Engineering, Hanyang University) ;
  • Kim, Jung-Ha (Department of Electronics Computer Engineering, Hanyang University) ;
  • Lee, Sang-Sun (Department of Electronics Computer Engineering, Hanyang University)
  • 투고 : 2010.06.23
  • 심사 : 2010.11.29
  • 발행 : 2010.12.25

초록

본 논문은 멀티레벨을 갖는 PoRAM 셀의 데이터를 센싱하는 기법에 관하여 제안하였다. PoRAM은 유기물질을 사용한 단위 셀의 상,하단 전극에 전압을 가했을 때 나타나는 저항 상태의 변화로 셀 데이터를 구분하는 메모리 소자이다. 특히 한 셀당 최대 4 레벨의 안정된 저항 값을 가지므로 멀티레벨 셀로 활용이 가능하다. 따라서 멀티레벨의 센싱을 위해 어드레스 디코딩 방법, 센스 앰플리파이어, 이를 위한 제어 신호 등을 새롭게 제안하였다. 센스 앰플리파이어는 셀에 흐르는 전류를 입력 값으로 받아 설정된 기준 전류($I_{REF}$)와 비교하는 전류 비교기를 기본으로 구성되며 전류를 증폭하기 위해 낮은 입력 임피던스를 갖도록 설계되었다. 제안된 기법에 의해 설계된 회로는 $0.13{\mu}m$ CMOS 공정 라이브러리를 사용하여 설계되었고, 이를 사용함으로써 단위 셀에 흐르는 서로 다른 4 가지 전류 값이 각각 데이터 "00", "01", "10", "11"으로 정확히 센싱 되는 것을 검증하였다.

In this paper, we suggested a sensing method of PoRAM with the multilevel cell When a specific voltage is applied between top and bottom electrodes of PoRAM unit cell, we can distinguish cell states by changing resistance values of the cell. Especially, we can use the PoRAM as the multilevel cell due to have four stable resistance values per cell. Therefore, we proposed an address decoding method, sense amplifier and control signal for sensing of a multilevel cell. The sense amplifier is designed based on a current comparator that compared a cell current the cell with a reference current, and have a low input impedance for a amplification of the current. The proposed circuit was designed in a $0.13{\mu}m$ CMOS technology, we verified to sense each data "00", "01", "10", "10" by four states of a cell current.

키워드

참고문헌

  1. Byung Do Yang, "A Low Power Phase-Change Random Access Memory Using A Selective Data Write Scheme", Journal of the Institute of Electronics Engineers of Korea, vol. 44 no. 1, pp. 45-50, 2007.
  2. Fuchs, G.D., Emley, N.C., Krivorotov, I.N., Braganca, P.M., Ryan, E.M., Kiselev, S.I., Sankey, J.C., (...), Katine, J.A., "Spin-transfer effects in nanoscale magnetic tunnel junctions", Applied Physics Letters, vol. 85, no. 7, pp. 1205-1207, August 2004. https://doi.org/10.1063/1.1781769
  3. Young Ho Do, June Sik Kwak, and Jin Pyo Hong, " Resistive Switching Characteristics of TiO2 Films with Embedded Co Ultra Thin Layer", Journal of Semiconductor Technology and Science Vol .8 No. 1, pp.80-84, March 2008. https://doi.org/10.5573/JSTS.2008.8.1.080
  4. Liping Ma, Qianfei Xu, and Yang yang, "Organic nonvolatile memory by controlling the dynamic copper-ion concentration within organic layer", Appl. Phys. Letters, vol. 84, no. 24, pp. 4908 - 4910, June 2004. https://doi.org/10.1063/1.1763222
  5. K.T Park, M Kang. D Kim, S.W Hwang, B.Y Choi, Y.T Lee, C Kim, K Kim, "A zeroing cell-to-cell interference page architecture with temporary LSB storing and parallel MSB program scheme for MLC NAND flash memories", IEEE Journal of Solid-State Circuits vol.43, no. 4, pp. 919-927, January 2008.
  6. Jung Ha Kim, Sang Sun Lee, "The 4bit Cell Array Structure of PoRAM and A Sensing Method for Drive this Structure", Journal of the Institute of Electronics Engineers of Korea, vol. 44 no. 6, pp. 45-50, 2007.
  7. J.G Park, W.S. Nam, S.H. Seo, Y.G. Kim, Y.H. oh, G.S. Lee, and U.G. Paik, "Multilevel Nonvolatile Small-Molecule Memory Cell Embedded with Ni Nanocrystals Surrounded by a NiO Tunneling Barrier", Nano Letters, vol. 9, no. 4, pp. 1713-1719, April 2009. https://doi.org/10.1021/nl900429h
  8. Kang, D.-H., Lee, J.-H., Kong, J.H., Ha, D., Yu, J., Um, C.Y., Park, J.H., Jeong, H.S., "Two-bit Cell Operation in Diode-Switch Phase Change Memory Cells with 90nm Technology". VLSI Tech, 2008 Symposium on, pp. 98-99, June 2008.
  9. C.Y. Ahn, J.H. Kim, J.H. Lee, S.S. Lee, "Read/Program/Erase operation and verify-algorithm for 1D1R polymer RAM", ITC-CSCC 2009, pp. 306-309, May 2009.
  10. Kasemsuwan, V., Khucharoensin, S., "Highspeed low input impedance CMOS current comparator", IEEE International Symposium on Circuits and Systems 1, pp. I141-I144, May 2003.