DOI QR코드

DOI QR Code

Improvement of Ethanol Production by Electrochemical Redox Combination of Zymomonas mobilis and Saccharomyces cerevisiae

  • Jeon, Bo-Young (Department of Biological Engineering, Seokyeong University) ;
  • Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
  • Published : 2010.01.31

Abstract

Zymomonas mobilis was immobilized in a modified graphite felt cathode with neutral red (NR-cathode) and Saccharomyces cerevisiae was cultivated on a platinum plate anode. An electrochemical redox reaction was induced by 3 volts of electric potential charged to the cathode and anode. The Z. mobilis produced 1.3-1.5 M of ethanol in the cathode compartment, whereas the S. cerevisiae produced 1.7-1.9 M in the anode compartment after 96 h. The ethanol produced by the Z. mobilis immobilized in the NR-cathode and S. cerevisiae cultivated on the platinum plate was 1.5-1.6 times higher than that produced under conventional conditions. The electrochemical oxidation potential inhibited Z. mobilis, but activated S. cerevisiae. The SDS-PAGE pattern of the total soluble proteins extracted from the Z. mobilis cultivated under the electrochemical oxidation conditions was gradually simplified in proportion to the potential intensity. Z. mobilis and S. cerevisiae were cultivated in the cathode and anode compartments, respectively, of an electrochemical redox combination system. The Z. mobilis culture cultivated in the cathode compartment for 24 h was continuously transferred to the S. cerevisiae culture in the anode compartment at a rate of 300 ml/day. Approx. 1.0-1.2 M of ethanol was produced by the Z. mobilis in the cathode compartment within 24 h, and an additional 0.8-0.9 M produced by the S. cerevisiae in the anode compartment within another 24 h. Thus, a total of 2.0-2.1 M of ethanol was produced by the electrochemical redox combination of Z. mobilis and S. cerevisiae within 48 h.

Keywords

References

  1. Alexandre, H., I. Rousseaux, and C. Charpentier. 1994. Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera epiculata. FEMS Microbiol. Lett. 124: 17-22. https://doi.org/10.1111/j.1574-6968.1994.tb07255.x
  2. Amin, G. and H. Verachtert. 1982. Comparative study of ethanol production by immobilized-cell systems using Zymomonas mobilis or Saccharomyces bayanus. Eur. J. Appl. Microbiol. Biotechnol. 14: 59-63. https://doi.org/10.1007/BF00498003
  3. Bakker, B. M., C. Bro, P. Kotter, M. A. H. Luttik, J. P. van Dijken, and J. T. Pronk. 2000. The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J. Bacteriol. 182: 4730-4737. https://doi.org/10.1128/JB.182.17.4730-4737.2000
  4. Bond, D. R. and D. R. Lovley. 2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71: 2186-2189. https://doi.org/10.1128/AEM.71.4.2186-2189.2005
  5. Bringer-Meyer, S. and H. Sahm. 1988. Metabolic shifts in Zymomonas mobilis in response to growth conditions. FEMS Microbiol Rev. 54: 131-142. https://doi.org/10.1111/j.1574-6968.1988.tb02739.x
  6. Bringer, S., H. Sahm, and W. Swyzen. 1984. Ethanol production by Zymomonas mobilis and its application on an industrial scale. Biotechnol. Bioeng. Symp. 14: 311-319.
  7. Bringer, S., R. K. Finn, and H. Sahm. 1984. Effect of oxygen on the metabolism of Zymomonas mobilis. Arch. Microbiol. 139: 376-381. https://doi.org/10.1007/BF00408383
  8. Bruinenberg, P. M., P. H. M. de Bot, J. P. van Dijken, and W. A. Scherffers. 1984. NADH-linked aldose reductase: A key to anaerobic alcohol fermentation of xylose by yeasts. Appl. Microbiol. Biotechnol. 19: 256-964.
  9. Burke, P. V., K. E. Kwast, F. Everts, and R. O. Poyton. 1998. A fermenter system for regulating oxygen at low concentration in cultures of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 64: 1040-1044.
  10. Dumont, M. E., J. B. Schlichter, T. S. Cardillo, J. K. Hayes, G. Bethlendy, and F. Sherman. 1993. CYC2 encodes a factor involved in mitochondrial import of yeast cytochromes c. Mol. Cell. Biol. 13: 6442-6451.
  11. Garicues, C., P. Loubiere, N. D. Lindley, and M. Cocaign-Bousquet. 1997. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: Predominant role of the NADH/NAD+ ratio. J. Bacteriol. 179: 5282-5287.
  12. Hansson, L. and M. H. Haggstrom. 1984. Effects of growth conditions on the activities of superoxide dismutase and NADH-oxidase/NADH-peroxidase in Streptococcus lactis. Curr. Microbiol. 10: 345-351. https://doi.org/10.1007/BF01626563
  13. Hoppner, T. C. and H. W. Doelle. 1983. Purification and kinetic characterization of pyruvate decarboxylase and ethanol dehydrogenase from Zymomonas mobilis in relation to ethanol production. Eur. J. Appl. Microbiol. Biotechnol. 17: 152-157. https://doi.org/10.1007/BF00505880
  14. Iren, E. P., H. C. Mastwijk, P. V. Bartels, and E. J. Smid. 2000. Pulsed-electric field treatment enhances the bactericidal action of nisin against Bacillus cereus. Appl. Environ. Microbiol. 69: 2405-2408.
  15. Jahnke, L. and H. P. Klein. 1983. Oxygen requirements for formation and activity of the squalene epoxide in Saccharomyces cerevisiae. J. Bacteriol. 155: 488-492.
  16. Jeon, B. Y., T. S. Hwang and D. H. Park. 2009. Electrochemical and biochemical analysis of ethanol fermentation of Zymomonas mobilis KCCM11336. J. Microbiol. Biotechnol. 19: (In Press). https://doi.org/10.4014/jmb.0809.509
  17. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  18. Luo, Q., H. Wang, X. Zhang, and Y. Qian. Effect of direct electric current on the cell surface properties of phenol-degrading bacteria. Appl. Environ. Microbiol. 71: 423-427.
  19. Park, D. H. and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65: 2912-2917.
  20. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neural red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410.
  21. Park, D. H. and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59: 58-61. https://doi.org/10.1007/s00253-002-0972-1
  22. Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producting electricity from microbial degradation. Biotechnol. Bioengin. 81: 348-355. https://doi.org/10.1002/bit.10501
  23. Park, S. M., H. S. Kang, D. W. Park, and D. H. Park. 2005. Electrochemical control of metabolic flux of Weissella kimchii sk10: Neutral red immobilized in cytoplasmic membrane as electron channel. J. Microbiol. Biotechnol. 15: 80-85.
  24. Rizzi, M., C. Klein, C. Schultze, N. Bul-Thahn, and H. Delwerg. 1989. Xylose fermentation by yeasts. 5. Use of ATP balances for modeling oxygen limited growth and fermentation with the yeast Pichia stipitis with xylose as a carbon source. Biotechnol. Bioeng. 34: 509-514. https://doi.org/10.1002/bit.260340411
  25. Rosenfeld, E., B. Beauvoit, B. Blondin, and J.-M. Salmon. 2003. Oxygen consumption by anaerobic Saccharomyces cerevisiae under enological conditions: Effect on fermentation kinetics. Appl. Environ. Microbiol. 69: 113-121. https://doi.org/10.1128/AEM.69.1.113-121.2003
  26. Sablayrolles, J. M., C. Dubois, C. Manginot, J. L. Roustan, and P. Barre. 1996. Effectiveness of combined ammoniacal nitrogen and oxygen additions for completion of sluggish and stuck wine fermentations. J. Ferment. Bioeng. 82: 377-381. https://doi.org/10.1016/0922-338X(96)89154-9
  27. Sims, A. P. and J. A. Barnett. 1978. The requirement of oxygen for the utilization of maltose, cellobiose and $_D$-galactose by certain anaerobically fermenting yeasts (Kluyver effect). J. Gen. Microbiol. 106: 277-288. https://doi.org/10.1099/00221287-106-2-277
  28. Skoog, K. and B. Hahn-Hagerdal. 1989. Intermediary metabolite concentration in xylose fermenting Candida tropicalis at varying oxygen limitations. Biotechnol. Tech. 3: 1-6. https://doi.org/10.1007/BF01876212
  29. Watson, N. E., B. A. Prior, J. C. du Preez, and P. M. Lategan. 1984. Oxygen requirements for $_D$-xylose fermentation to ethanol and polyols by Pachysolen tannophilus. Enzyme Microb. Technol. 6: 447-450. https://doi.org/10.1016/0141-0229(84)90094-2
  30. You, K. M., C.-L. Rosenfield, and D. C. Knipple. 2003. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl. Environ. Microbiol. 69: 1499-1503. https://doi.org/10.1128/AEM.69.3.1499-1503.2003

Cited by

  1. Ageing vessel configuration for continuous redox potential-controlled very-high-gravity fermentation vol.111, pp.1, 2010, https://doi.org/10.1016/j.jbiosc.2010.09.003
  2. Bioelectrochemical Mn(II) Leaching from Manganese Ore by Lactococcus lactis SK071115 vol.21, pp.2, 2010, https://doi.org/10.4014/jmb.1007.07053
  3. Effect of Dilute Alkali on Structural Features and Enzymatic Hydrolysis of Barley Straw (Hordeum vulgare) at Boiling Temperature with Low Residence Time vol.22, pp.12, 2010, https://doi.org/10.4014/jmb.1206.06058
  4. Control of redox potential in hybridoma cultures: effects on MAb production, metabolism, and apoptosis vol.39, pp.8, 2010, https://doi.org/10.1007/s10295-012-1125-x
  5. Developmental strategies and regulation of cell-free enzyme system for ethanol production: a molecular prospective vol.98, pp.23, 2010, https://doi.org/10.1007/s00253-014-6154-0
  6. Optimization of VFAs and ethanol production with waste sludge used as the denitrification carbon source vol.72, pp.8, 2010, https://doi.org/10.2166/wst.2015.338
  7. Enhancement of Ethanol Production in Electrochemical Cell by Saccharomyces cerevisiae (CDBT2) and Wickerhamomyces anomalus (CDBT7) vol.7, pp.None, 2010, https://doi.org/10.3389/fenrg.2019.00070
  8. The Degradation of Deoxynivalenol by Using Electrochemical Oxidation with Graphite Electrodes and the Toxicity Assessment of Degradation Products vol.11, pp.8, 2010, https://doi.org/10.3390/toxins11080478