References
- Alexandre, H., I. Rousseaux, and C. Charpentier. 1994. Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera epiculata. FEMS Microbiol. Lett. 124: 17-22. https://doi.org/10.1111/j.1574-6968.1994.tb07255.x
- Amin, G. and H. Verachtert. 1982. Comparative study of ethanol production by immobilized-cell systems using Zymomonas mobilis or Saccharomyces bayanus. Eur. J. Appl. Microbiol. Biotechnol. 14: 59-63. https://doi.org/10.1007/BF00498003
- Bakker, B. M., C. Bro, P. Kotter, M. A. H. Luttik, J. P. van Dijken, and J. T. Pronk. 2000. The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J. Bacteriol. 182: 4730-4737. https://doi.org/10.1128/JB.182.17.4730-4737.2000
- Bond, D. R. and D. R. Lovley. 2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71: 2186-2189. https://doi.org/10.1128/AEM.71.4.2186-2189.2005
- Bringer-Meyer, S. and H. Sahm. 1988. Metabolic shifts in Zymomonas mobilis in response to growth conditions. FEMS Microbiol Rev. 54: 131-142. https://doi.org/10.1111/j.1574-6968.1988.tb02739.x
- Bringer, S., H. Sahm, and W. Swyzen. 1984. Ethanol production by Zymomonas mobilis and its application on an industrial scale. Biotechnol. Bioeng. Symp. 14: 311-319.
- Bringer, S., R. K. Finn, and H. Sahm. 1984. Effect of oxygen on the metabolism of Zymomonas mobilis. Arch. Microbiol. 139: 376-381. https://doi.org/10.1007/BF00408383
- Bruinenberg, P. M., P. H. M. de Bot, J. P. van Dijken, and W. A. Scherffers. 1984. NADH-linked aldose reductase: A key to anaerobic alcohol fermentation of xylose by yeasts. Appl. Microbiol. Biotechnol. 19: 256-964.
- Burke, P. V., K. E. Kwast, F. Everts, and R. O. Poyton. 1998. A fermenter system for regulating oxygen at low concentration in cultures of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 64: 1040-1044.
- Dumont, M. E., J. B. Schlichter, T. S. Cardillo, J. K. Hayes, G. Bethlendy, and F. Sherman. 1993. CYC2 encodes a factor involved in mitochondrial import of yeast cytochromes c. Mol. Cell. Biol. 13: 6442-6451.
- Garicues, C., P. Loubiere, N. D. Lindley, and M. Cocaign-Bousquet. 1997. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: Predominant role of the NADH/NAD+ ratio. J. Bacteriol. 179: 5282-5287.
- Hansson, L. and M. H. Haggstrom. 1984. Effects of growth conditions on the activities of superoxide dismutase and NADH-oxidase/NADH-peroxidase in Streptococcus lactis. Curr. Microbiol. 10: 345-351. https://doi.org/10.1007/BF01626563
- Hoppner, T. C. and H. W. Doelle. 1983. Purification and kinetic characterization of pyruvate decarboxylase and ethanol dehydrogenase from Zymomonas mobilis in relation to ethanol production. Eur. J. Appl. Microbiol. Biotechnol. 17: 152-157. https://doi.org/10.1007/BF00505880
- Iren, E. P., H. C. Mastwijk, P. V. Bartels, and E. J. Smid. 2000. Pulsed-electric field treatment enhances the bactericidal action of nisin against Bacillus cereus. Appl. Environ. Microbiol. 69: 2405-2408.
- Jahnke, L. and H. P. Klein. 1983. Oxygen requirements for formation and activity of the squalene epoxide in Saccharomyces cerevisiae. J. Bacteriol. 155: 488-492.
- Jeon, B. Y., T. S. Hwang and D. H. Park. 2009. Electrochemical and biochemical analysis of ethanol fermentation of Zymomonas mobilis KCCM11336. J. Microbiol. Biotechnol. 19: (In Press). https://doi.org/10.4014/jmb.0809.509
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Luo, Q., H. Wang, X. Zhang, and Y. Qian. Effect of direct electric current on the cell surface properties of phenol-degrading bacteria. Appl. Environ. Microbiol. 71: 423-427.
- Park, D. H. and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65: 2912-2917.
- Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neural red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410.
- Park, D. H. and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59: 58-61. https://doi.org/10.1007/s00253-002-0972-1
- Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producting electricity from microbial degradation. Biotechnol. Bioengin. 81: 348-355. https://doi.org/10.1002/bit.10501
- Park, S. M., H. S. Kang, D. W. Park, and D. H. Park. 2005. Electrochemical control of metabolic flux of Weissella kimchii sk10: Neutral red immobilized in cytoplasmic membrane as electron channel. J. Microbiol. Biotechnol. 15: 80-85.
- Rizzi, M., C. Klein, C. Schultze, N. Bul-Thahn, and H. Delwerg. 1989. Xylose fermentation by yeasts. 5. Use of ATP balances for modeling oxygen limited growth and fermentation with the yeast Pichia stipitis with xylose as a carbon source. Biotechnol. Bioeng. 34: 509-514. https://doi.org/10.1002/bit.260340411
- Rosenfeld, E., B. Beauvoit, B. Blondin, and J.-M. Salmon. 2003. Oxygen consumption by anaerobic Saccharomyces cerevisiae under enological conditions: Effect on fermentation kinetics. Appl. Environ. Microbiol. 69: 113-121. https://doi.org/10.1128/AEM.69.1.113-121.2003
- Sablayrolles, J. M., C. Dubois, C. Manginot, J. L. Roustan, and P. Barre. 1996. Effectiveness of combined ammoniacal nitrogen and oxygen additions for completion of sluggish and stuck wine fermentations. J. Ferment. Bioeng. 82: 377-381. https://doi.org/10.1016/0922-338X(96)89154-9
-
Sims, A. P. and J. A. Barnett. 1978. The requirement of oxygen for the utilization of maltose, cellobiose and
$_D$ -galactose by certain anaerobically fermenting yeasts (Kluyver effect). J. Gen. Microbiol. 106: 277-288. https://doi.org/10.1099/00221287-106-2-277 - Skoog, K. and B. Hahn-Hagerdal. 1989. Intermediary metabolite concentration in xylose fermenting Candida tropicalis at varying oxygen limitations. Biotechnol. Tech. 3: 1-6. https://doi.org/10.1007/BF01876212
-
Watson, N. E., B. A. Prior, J. C. du Preez, and P. M. Lategan. 1984. Oxygen requirements for
$_D$ -xylose fermentation to ethanol and polyols by Pachysolen tannophilus. Enzyme Microb. Technol. 6: 447-450. https://doi.org/10.1016/0141-0229(84)90094-2 - You, K. M., C.-L. Rosenfield, and D. C. Knipple. 2003. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl. Environ. Microbiol. 69: 1499-1503. https://doi.org/10.1128/AEM.69.3.1499-1503.2003
Cited by
- Ageing vessel configuration for continuous redox potential-controlled very-high-gravity fermentation vol.111, pp.1, 2010, https://doi.org/10.1016/j.jbiosc.2010.09.003
- Bioelectrochemical Mn(II) Leaching from Manganese Ore by Lactococcus lactis SK071115 vol.21, pp.2, 2010, https://doi.org/10.4014/jmb.1007.07053
- Effect of Dilute Alkali on Structural Features and Enzymatic Hydrolysis of Barley Straw (Hordeum vulgare) at Boiling Temperature with Low Residence Time vol.22, pp.12, 2010, https://doi.org/10.4014/jmb.1206.06058
- Control of redox potential in hybridoma cultures: effects on MAb production, metabolism, and apoptosis vol.39, pp.8, 2010, https://doi.org/10.1007/s10295-012-1125-x
- Developmental strategies and regulation of cell-free enzyme system for ethanol production: a molecular prospective vol.98, pp.23, 2010, https://doi.org/10.1007/s00253-014-6154-0
- Optimization of VFAs and ethanol production with waste sludge used as the denitrification carbon source vol.72, pp.8, 2010, https://doi.org/10.2166/wst.2015.338
- Enhancement of Ethanol Production in Electrochemical Cell by Saccharomyces cerevisiae (CDBT2) and Wickerhamomyces anomalus (CDBT7) vol.7, pp.None, 2010, https://doi.org/10.3389/fenrg.2019.00070
- The Degradation of Deoxynivalenol by Using Electrochemical Oxidation with Graphite Electrodes and the Toxicity Assessment of Degradation Products vol.11, pp.8, 2010, https://doi.org/10.3390/toxins11080478