Browse > Article
http://dx.doi.org/10.4014/jmb.0904.04029

Improvement of Ethanol Production by Electrochemical Redox Combination of Zymomonas mobilis and Saccharomyces cerevisiae  

Jeon, Bo-Young (Department of Biological Engineering, Seokyeong University)
Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.1, 2010 , pp. 94-100 More about this Journal
Abstract
Zymomonas mobilis was immobilized in a modified graphite felt cathode with neutral red (NR-cathode) and Saccharomyces cerevisiae was cultivated on a platinum plate anode. An electrochemical redox reaction was induced by 3 volts of electric potential charged to the cathode and anode. The Z. mobilis produced 1.3-1.5 M of ethanol in the cathode compartment, whereas the S. cerevisiae produced 1.7-1.9 M in the anode compartment after 96 h. The ethanol produced by the Z. mobilis immobilized in the NR-cathode and S. cerevisiae cultivated on the platinum plate was 1.5-1.6 times higher than that produced under conventional conditions. The electrochemical oxidation potential inhibited Z. mobilis, but activated S. cerevisiae. The SDS-PAGE pattern of the total soluble proteins extracted from the Z. mobilis cultivated under the electrochemical oxidation conditions was gradually simplified in proportion to the potential intensity. Z. mobilis and S. cerevisiae were cultivated in the cathode and anode compartments, respectively, of an electrochemical redox combination system. The Z. mobilis culture cultivated in the cathode compartment for 24 h was continuously transferred to the S. cerevisiae culture in the anode compartment at a rate of 300 ml/day. Approx. 1.0-1.2 M of ethanol was produced by the Z. mobilis in the cathode compartment within 24 h, and an additional 0.8-0.9 M produced by the S. cerevisiae in the anode compartment within another 24 h. Thus, a total of 2.0-2.1 M of ethanol was produced by the electrochemical redox combination of Z. mobilis and S. cerevisiae within 48 h.
Keywords
Saccharomyces cerevisiae; Zymomonas mobilis; ethanol fermentation; redox combination; electrochemical bioreactor;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Alexandre, H., I. Rousseaux, and C. Charpentier. 1994. Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera epiculata. FEMS Microbiol. Lett. 124: 17-22.   DOI   ScienceOn
2 Bringer-Meyer, S. and H. Sahm. 1988. Metabolic shifts in Zymomonas mobilis in response to growth conditions. FEMS Microbiol Rev. 54: 131-142.   DOI   ScienceOn
3 Bringer, S., R. K. Finn, and H. Sahm. 1984. Effect of oxygen on the metabolism of Zymomonas mobilis. Arch. Microbiol. 139: 376-381.   DOI
4 Park, D. H. and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65: 2912-2917.
5 Park, D. H. and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59: 58-61.   DOI   ScienceOn
6 Rosenfeld, E., B. Beauvoit, B. Blondin, and J.-M. Salmon. 2003. Oxygen consumption by anaerobic Saccharomyces cerevisiae under enological conditions: Effect on fermentation kinetics. Appl. Environ. Microbiol. 69: 113-121.   DOI   ScienceOn
7 Sablayrolles, J. M., C. Dubois, C. Manginot, J. L. Roustan, and P. Barre. 1996. Effectiveness of combined ammoniacal nitrogen and oxygen additions for completion of sluggish and stuck wine fermentations. J. Ferment. Bioeng. 82: 377-381.   DOI   ScienceOn
8 You, K. M., C.-L. Rosenfield, and D. C. Knipple. 2003. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl. Environ. Microbiol. 69: 1499-1503.   DOI   ScienceOn
9 Hoppner, T. C. and H. W. Doelle. 1983. Purification and kinetic characterization of pyruvate decarboxylase and ethanol dehydrogenase from Zymomonas mobilis in relation to ethanol production. Eur. J. Appl. Microbiol. Biotechnol. 17: 152-157.   DOI
10 Amin, G. and H. Verachtert. 1982. Comparative study of ethanol production by immobilized-cell systems using Zymomonas mobilis or Saccharomyces bayanus. Eur. J. Appl. Microbiol. Biotechnol. 14: 59-63.   DOI
11 Watson, N. E., B. A. Prior, J. C. du Preez, and P. M. Lategan. 1984. Oxygen requirements for $_D$-xylose fermentation to ethanol and polyols by Pachysolen tannophilus. Enzyme Microb. Technol. 6: 447-450.   DOI   ScienceOn
12 Sims, A. P. and J. A. Barnett. 1978. The requirement of oxygen for the utilization of maltose, cellobiose and $_D$-galactose by certain anaerobically fermenting yeasts (Kluyver effect). J. Gen. Microbiol. 106: 277-288.   DOI   ScienceOn
13 Bruinenberg, P. M., P. H. M. de Bot, J. P. van Dijken, and W. A. Scherffers. 1984. NADH-linked aldose reductase: A key to anaerobic alcohol fermentation of xylose by yeasts. Appl. Microbiol. Biotechnol. 19: 256-964.
14 Skoog, K. and B. Hahn-Hagerdal. 1989. Intermediary metabolite concentration in xylose fermenting Candida tropicalis at varying oxygen limitations. Biotechnol. Tech. 3: 1-6.   DOI
15 Hansson, L. and M. H. Haggstrom. 1984. Effects of growth conditions on the activities of superoxide dismutase and NADH-oxidase/NADH-peroxidase in Streptococcus lactis. Curr. Microbiol. 10: 345-351.   DOI
16 Bond, D. R. and D. R. Lovley. 2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71: 2186-2189.   DOI   ScienceOn
17 Bringer, S., H. Sahm, and W. Swyzen. 1984. Ethanol production by Zymomonas mobilis and its application on an industrial scale. Biotechnol. Bioeng. Symp. 14: 311-319.
18 Bakker, B. M., C. Bro, P. Kotter, M. A. H. Luttik, J. P. van Dijken, and J. T. Pronk. 2000. The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J. Bacteriol. 182: 4730-4737.   DOI   ScienceOn
19 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn
20 Luo, Q., H. Wang, X. Zhang, and Y. Qian. Effect of direct electric current on the cell surface properties of phenol-degrading bacteria. Appl. Environ. Microbiol. 71: 423-427.
21 Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producting electricity from microbial degradation. Biotechnol. Bioengin. 81: 348-355.   DOI   ScienceOn
22 Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neural red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410.
23 Burke, P. V., K. E. Kwast, F. Everts, and R. O. Poyton. 1998. A fermenter system for regulating oxygen at low concentration in cultures of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 64: 1040-1044.
24 Jahnke, L. and H. P. Klein. 1983. Oxygen requirements for formation and activity of the squalene epoxide in Saccharomyces cerevisiae. J. Bacteriol. 155: 488-492.
25 Garicues, C., P. Loubiere, N. D. Lindley, and M. Cocaign-Bousquet. 1997. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: Predominant role of the NADH/NAD+ ratio. J. Bacteriol. 179: 5282-5287.
26 Iren, E. P., H. C. Mastwijk, P. V. Bartels, and E. J. Smid. 2000. Pulsed-electric field treatment enhances the bactericidal action of nisin against Bacillus cereus. Appl. Environ. Microbiol. 69: 2405-2408.
27 Dumont, M. E., J. B. Schlichter, T. S. Cardillo, J. K. Hayes, G. Bethlendy, and F. Sherman. 1993. CYC2 encodes a factor involved in mitochondrial import of yeast cytochromes c. Mol. Cell. Biol. 13: 6442-6451.
28 Rizzi, M., C. Klein, C. Schultze, N. Bul-Thahn, and H. Delwerg. 1989. Xylose fermentation by yeasts. 5. Use of ATP balances for modeling oxygen limited growth and fermentation with the yeast Pichia stipitis with xylose as a carbon source. Biotechnol. Bioeng. 34: 509-514.   DOI   ScienceOn
29 Jeon, B. Y., T. S. Hwang and D. H. Park. 2009. Electrochemical and biochemical analysis of ethanol fermentation of Zymomonas mobilis KCCM11336. J. Microbiol. Biotechnol. 19: (In Press).   DOI
30 Park, S. M., H. S. Kang, D. W. Park, and D. H. Park. 2005. Electrochemical control of metabolic flux of Weissella kimchii sk10: Neutral red immobilized in cytoplasmic membrane as electron channel. J. Microbiol. Biotechnol. 15: 80-85.