References
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Breeuwer, P., J. Drocourt, F. Rombouts, and T. Abee. 1996. A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester. Appl. Environ. Microbiol. 62: 178-183.
-
Buyukkileci, A. O. and S. Harsa. 2004. Batch production of
$_L$ (+) lactic acid from whey by Lactobacillus casei (NRRL B-441). J. Chem. Technol. Biotechnol. 79: 1036-1040. https://doi.org/10.1002/jctb.1094 - Chen, G., Z. Sun, Y. Wang, and X. Qian. 1997. Purification and properties of inulinase from Aspergillus niger. Wei Sheng Wu Xue Bao 37: 362-367.
- Chen, S. Z., N. D. Gu, and W. Shang. 2003. Effect of the improved smash method for ethanol production from raw substrate. Liquor Making 30: 65-66.
- Cook, G. M. and J. B. Russell. 1994. The effect of extracellular pH and lactic acid on pH homeostasis in Lactococcus lactis and Streptococcus bovis. Curr. Microbiology. 28: 165-168. https://doi.org/10.1007/BF01571059
-
Ding, S. F. and T. W. Ding. 2006.
$_L$ -Lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochem. 41: 1451-1454. https://doi.org/10.1016/j.procbio.2006.01.014 - Dumbrepatil, A., M. Adsul, S. Chaudhari, J. Khire, and D. Gokhale. 2007. Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Appl. Environ. Microbiol. 74: 333-335.
- Even, S., N. D. Lindley, P. Loubiere, and M. Cocaign-Bousquet. 2002. Dynamic response of catabolic pathways to autoacidification in Lactococcus lactis: Transcript profiling and stability in relation to metabolic and energetic constraints. Mol. Microbiol. 45: 1143-1152. https://doi.org/10.1046/j.1365-2958.2002.03086.x
- Gaudu, P., K. Vido, B. Cesselin, S. Kulakauskas, J. Tremblay, L. Rezaiki, et al. 2002. Respiration capacity and consequences in Lactococcus lactis. Antonie Van Leeuwenhoek 82: 263-269. https://doi.org/10.1023/A:1020635600343
- Gao, M. T., M. Kaneko, M. Hirata, E. Toorisaka, and T. Hano. 2008. Utilization of rice bran as nutrient source for fermentative lactic acid production. Bioresour. Technol. 99: 3659-3664. https://doi.org/10.1016/j.biortech.2007.07.025
- Gao, L. J., H. Y. Yang, X. F. Wang, Z. Y. Huang, M. Ishii, Y. Igarashi, and Z. J. Cui. 2008. Rice straw fermentation using lactic acid bacteria. Bioresour. Technol. 99: 2742-2748. https://doi.org/10.1016/j.biortech.2007.07.001
-
Ge, X. Y., H. Qian, and W. G. Zhang. 2009. Improvement of
$_L$ -lactic acid production from Jerusalem artichoke tubers by mixed culture of Aspergillus niger and Lactobacillus sp. Bioresour. Technol. 100: 1872-1874. https://doi.org/10.1016/j.biortech.2008.09.049 - Ge, X. Y. and W. G. Zhang. 2005. Screening Aspergillus niger for production of ethanol from Jerusalem artichoke flour by simultaneous saccharification and fermentation. J. Food Sci. Biotechnol. 25: 83-87.
- Ge, X. Y. and W. G. Zhang. 2005. A shortcut to the production of high ethanol concentration from Jerusalem artichoke tubers. Food Technol. Biotechnol. 43: 241-246.
-
Gonzalez-Vara, A. R., G. Vaccari, E. Dosi, A. Trilli, M. Rossi, and D. Matteuzzi. 2000. Enhanced production of
$_L$ -(+)-lactic acid in chemostat by Lactobacillus casei DSM 20011 using ion-exchange resins and cross-flow filtration in a fully automated pilot plant controlled via NIR. Biotechnol. Bioeng. 67: 147-156. https://doi.org/10.1002/(SICI)1097-0290(20000120)67:2<147::AID-BIT4>3.0.CO;2-F - Hutkins, R. W. and N. L. Nannen. 1993. pH homeostasis in lactic acid bacteria. J. Dairy Sci. 76: 2354-2365. https://doi.org/10.3168/jds.S0022-0302(93)77573-6
-
John, R. P., K. M. Nampoothiri, and A. Pandey. 2007. Polyurethane foam as an inert carrier for the production of
$_L$ (+)-lactic acid by Lactobacillus casei under solid-state fermentation. Lett. Appl. Microbiol. 44: 582-587. https://doi.org/10.1111/j.1472-765X.2007.02137.x - Kashket, E. R. 1987. Bioenergetics of lactic acid bacteria: Cytoplasmic pH and osmotolerance. FEMS Microbiol. Rev. 46: 233-244. https://doi.org/10.1111/j.1574-6968.1987.tb02463.x
- Koebmann, B. J., H. V. Westerhoff, J. L. Snoep, D. Nilsson, and P. R. Jensen. 2002. The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J. Bacteriol. 184: 3909-3916. https://doi.org/10.1128/JB.184.14.3909-3916.2002
-
Li, Z., S. F. Ding, Z. P. Li, and T. W. Tan. 2006.
$_L$ -Lactic acid production by Lactobacillus casei fermentation with corn steep liquor-supplemented acid-hydrolysate of soybean meal. Biotechnol. J. 1: 1453-1458. https://doi.org/10.1002/biot.200600099 - Liu, L. M., Y. Li, G. C. Du, and J. Chen. 2006. Increasing glycolytic flux in Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation. J. Appl. Microbiol. 100: 1043-1053. https://doi.org/10.1111/j.1365-2672.2006.02871.x
- Lopez de Felipe, F. and J. Hugenholtz. 2001. Purification and characterization of the water forming NADH-oxidase from Lactococcus lactis. Int. Dairy J. 11: 37-44. https://doi.org/10.1016/S0958-6946(01)00031-0
- Maas, R. H. W., R. R. Bakker, M. L. A. Jansen, D. Visser, E. De Jong, G. Eggink, and R. A. Weusthuis. 2008. Lactic acid production from lime-treated wheat straw by Bacillus coagulans: Neutralization of acid by fed-batch addition of alkaline substrate. Appl. Microbiol. Biotechnol. 78: 751-758. https://doi.org/10.1007/s00253-008-1361-1
- Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Nakamura, T., Y. Ogata, S. Hamada, and K. Ohta. 1996. Ethanol production from Jerusalem artichoke tubers by Aspergillus niger and Saccharomyces cerevisiae. J. Ferment. Bioeng. 81: 564-566. https://doi.org/10.1016/0922-338X(96)81482-6
-
Okano, K., Q. Zhang, S. Shinkawa, S. Yoshida, T. Tanaka, H. Fukuda, and A. Kondo. 2009. Efficient production of optically pure
$_D$ -lactic acid from raw corn starch using genetically modified$_L$ -lactate dehydrogenase gene-deficient and${\alpha}$ -amylase-secreting Lactobacillus plantarum. Appl. Environ. Microbiol. 75: 462-467. https://doi.org/10.1128/AEM.01514-08 - Pandey, A., C. R. Soccol, P. Selvakumar, V. T. Soccol, N. Krieger, and J. D. Fontana. 1999. Recent developments in microbial inulinases. Appl. Biochem. Biotechnol. 81: 35-52. https://doi.org/10.1385/ABAB:81:1:35
- Parkin, K. L. 2003. Putting kinetic principles into practice, pp. 181-191. In A. G. Marangoni (ed.). Enzyme Kinetics. John Wiley & Sons, Inc., U.S.A.
- Qi, B. K. and Y. Risheng. 2007. (L)-Lactic acid production from Lactobacillus casei by solid state fermentation using rice straw. Bioresoueces 2: 419-429.
- Romani, A., R. Yanez, G. Garrote, and J. L. Alonso. 2008. SSF production of lactic acid from cellulosic biosludges. Bioresour. Technol. 99: 4247-4254. https://doi.org/10.1016/j.biortech.2007.08.051
- Russell, J. B. and F. Diez-Gonzalez. 1998. The effects of fermentation acids on bacterial growth. Adv. Microb. Physiol. 39: 205-234.
- Sanchez, C., A. R. Neves, J. Cavalheiro, M. M. dos Santos, N. Garcia-Quintans, P. Lopez, and H. Santos. 2008. Contribution of citrate metabolism to the growth of Lactococcus lactis CRL264 at low pH. Appl. Environ. Microbiol. 74: 1136-1144. https://doi.org/10.1128/AEM.01061-07
- Stephanopoulos, G. N., A. A. Aristidou, and J. Nielsen. 1998. Metabolic Engineering. Academic Press, New York.
- Tan, T. W. 2008. Biochemical Engineering, pp. 15-30. Chemical Industry Press, Beijing.
- Torino, M. I., M. P. Taranto, and G. Font de Valdez. 2005. Citrate catabolism and production of acetate and succinate by Lactobacillus helveticus ATCC 15807. Appl. Microbiol. Biotechnol. 69: 79-85. https://doi.org/10.1007/s00253-005-1949-7
- Wilks, J. C., R. D. Kitko, S. H. Cleeton, G. E. Lee, C. S. Ugwu, B. D. Jones, S. S. BonDurant, and J. L. Slonczewski. 2009. Acid and base stress and transcriptomic responses in Bacillus subtilis. Appl. Environ. Microbiol. 75: 981-990. https://doi.org/10.1128/AEM.01652-08
-
Yun, J. S., Y. J. Wee, J. N. Kim, and H. W. Ryu. 2004. Fermentative production of
$_{DL}$ -lactic acid from amylase-treated rice and wheat bran hydrolyzate by a novel lactic acid bacterium, Lactobacillus sp. Biotechnol. Lett. 26: 845-848.
Cited by
- Simultaneous saccharification and cofermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media vol.4, pp.None, 2011, https://doi.org/10.1186/1754-6834-4-22
- Improvement of l-lactic acid production by osmotic-tolerant mutant of Lactobacillus casei at high temperature vol.89, pp.1, 2010, https://doi.org/10.1007/s00253-010-2868-9
- THE EFFECT OF TEMPERATURE ON L-LACTIC ACID PRODUCTION AND METABOLITE DISTRIBUTION OFLactobacillus casei vol.42, pp.6, 2010, https://doi.org/10.1080/10826068.2012.665114
- Production of Fermentation Feedstock from Jerusalem Artichoke Tubers and its Potential for Polyhydroxybutyrate Synthesis vol.4, pp.2, 2010, https://doi.org/10.1007/s12649-012-9154-2
- Biorefinery products from the inulin-containing crop Jerusalem artichoke vol.35, pp.4, 2010, https://doi.org/10.1007/s10529-012-1104-3
- Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing vol.108, pp.1, 2010, https://doi.org/10.1007/s10482-015-0476-5
- Current Advances in Separation and Purification of Second-Generation Lactic Acid vol.49, pp.2, 2010, https://doi.org/10.1080/15422119.2019.1590412
- Lactic acid production – producing microorganisms and substrates sources-state of art vol.6, pp.10, 2020, https://doi.org/10.1016/j.heliyon.2020.e04974
- Use of glycerol waste in lactic acid bacteria metabolism for the production of lactic acid: State of the art in Poland vol.19, pp.1, 2010, https://doi.org/10.1515/chem-2021-0073
- Optimization of Inulin Hydrolysis by Penicillium lanosocoeruleum Inulinases and Efficient Conversion Into Polyhydroxyalkanoates vol.9, pp.None, 2021, https://doi.org/10.3389/fbioe.2021.616908
- Fermentation as a Strategy for Bio-Transforming Waste into Resources: Lactic Acid Production from Agri-Food Residues vol.7, pp.1, 2010, https://doi.org/10.3390/fermentation7010003