DOI QR코드

DOI QR Code

Enhancement of L-Lactic Acid Production in Lactobacillus casei from Jerusalem Artichoke Tubers by Kinetic Optimization and Citrate Metabolism

  • Ge, Xiang-Yang (Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, JiangNan University) ;
  • Qian, He (State Key Laboratory of Food Science and Technology, School of Food Science, JiangNan University) ;
  • Zhang, Wei-Guo (Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, JiangNan University)
  • Published : 2010.01.31

Abstract

Efficient L-lactic acid production from Jerusalem artichoke tubers, by Lactobacillus casei G-02, using simultaneous saccharification and fermentation (SSF) in a fed-batch culture, is demonstrated. A kinetic analysis of the SSF revealed that the inulinase activity was subjected to product inhibition, whereas the fermentation activity of G-02 was subjected to substrate inhibition. It was also found that the intracellular NADH oxidase (NOX) activity was enhanced by the citrate metabolism, which dramatically increased the carbon flux of the Embden-Meyerhof-Parnas (EMP) pathway, along with the production of ATP. As a result, when the SSF was carried out at $40^{\circ}C$ after an initial hydrolysis of 1 h and included a sodium citrate supplement of 10 g/l, an L-lactic acid concentration of 141.5 g/l was obtained after 30 h, with a volumetric productivity of 4.7 g/l/h. The conversion efficiency and product yield were 93.6% of the theoretical lactic acid yield and 52.4 g lactic acid/l00 g Jerusalem artichoke flour, respectively. Such a high concentration of lactic acid with a high productivity from Jerusalem artichokes has not been reported previously, making G-02 a potential candidate for the economic production of L-lactic acid from Jerusalem artichokes on a commercial scale.

Keywords

References

  1. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  2. Breeuwer, P., J. Drocourt, F. Rombouts, and T. Abee. 1996. A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester. Appl. Environ. Microbiol. 62: 178-183.
  3. Buyukkileci, A. O. and S. Harsa. 2004. Batch production of $_L$(+) lactic acid from whey by Lactobacillus casei (NRRL B-441). J. Chem. Technol. Biotechnol. 79: 1036-1040. https://doi.org/10.1002/jctb.1094
  4. Chen, G., Z. Sun, Y. Wang, and X. Qian. 1997. Purification and properties of inulinase from Aspergillus niger. Wei Sheng Wu Xue Bao 37: 362-367.
  5. Chen, S. Z., N. D. Gu, and W. Shang. 2003. Effect of the improved smash method for ethanol production from raw substrate. Liquor Making 30: 65-66.
  6. Cook, G. M. and J. B. Russell. 1994. The effect of extracellular pH and lactic acid on pH homeostasis in Lactococcus lactis and Streptococcus bovis. Curr. Microbiology. 28: 165-168. https://doi.org/10.1007/BF01571059
  7. Ding, S. F. and T. W. Ding. 2006. $_L$-Lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochem. 41: 1451-1454. https://doi.org/10.1016/j.procbio.2006.01.014
  8. Dumbrepatil, A., M. Adsul, S. Chaudhari, J. Khire, and D. Gokhale. 2007. Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Appl. Environ. Microbiol. 74: 333-335.
  9. Even, S., N. D. Lindley, P. Loubiere, and M. Cocaign-Bousquet. 2002. Dynamic response of catabolic pathways to autoacidification in Lactococcus lactis: Transcript profiling and stability in relation to metabolic and energetic constraints. Mol. Microbiol. 45: 1143-1152. https://doi.org/10.1046/j.1365-2958.2002.03086.x
  10. Gaudu, P., K. Vido, B. Cesselin, S. Kulakauskas, J. Tremblay, L. Rezaiki, et al. 2002. Respiration capacity and consequences in Lactococcus lactis. Antonie Van Leeuwenhoek 82: 263-269. https://doi.org/10.1023/A:1020635600343
  11. Gao, M. T., M. Kaneko, M. Hirata, E. Toorisaka, and T. Hano. 2008. Utilization of rice bran as nutrient source for fermentative lactic acid production. Bioresour. Technol. 99: 3659-3664. https://doi.org/10.1016/j.biortech.2007.07.025
  12. Gao, L. J., H. Y. Yang, X. F. Wang, Z. Y. Huang, M. Ishii, Y. Igarashi, and Z. J. Cui. 2008. Rice straw fermentation using lactic acid bacteria. Bioresour. Technol. 99: 2742-2748. https://doi.org/10.1016/j.biortech.2007.07.001
  13. Ge, X. Y., H. Qian, and W. G. Zhang. 2009. Improvement of $_L$-lactic acid production from Jerusalem artichoke tubers by mixed culture of Aspergillus niger and Lactobacillus sp. Bioresour. Technol. 100: 1872-1874. https://doi.org/10.1016/j.biortech.2008.09.049
  14. Ge, X. Y. and W. G. Zhang. 2005. Screening Aspergillus niger for production of ethanol from Jerusalem artichoke flour by simultaneous saccharification and fermentation. J. Food Sci. Biotechnol. 25: 83-87.
  15. Ge, X. Y. and W. G. Zhang. 2005. A shortcut to the production of high ethanol concentration from Jerusalem artichoke tubers. Food Technol. Biotechnol. 43: 241-246.
  16. Gonzalez-Vara, A. R., G. Vaccari, E. Dosi, A. Trilli, M. Rossi, and D. Matteuzzi. 2000. Enhanced production of $_L$-(+)-lactic acid in chemostat by Lactobacillus casei DSM 20011 using ion-exchange resins and cross-flow filtration in a fully automated pilot plant controlled via NIR. Biotechnol. Bioeng. 67: 147-156. https://doi.org/10.1002/(SICI)1097-0290(20000120)67:2<147::AID-BIT4>3.0.CO;2-F
  17. Hutkins, R. W. and N. L. Nannen. 1993. pH homeostasis in lactic acid bacteria. J. Dairy Sci. 76: 2354-2365. https://doi.org/10.3168/jds.S0022-0302(93)77573-6
  18. John, R. P., K. M. Nampoothiri, and A. Pandey. 2007. Polyurethane foam as an inert carrier for the production of $_L$(+)-lactic acid by Lactobacillus casei under solid-state fermentation. Lett. Appl. Microbiol. 44: 582-587. https://doi.org/10.1111/j.1472-765X.2007.02137.x
  19. Kashket, E. R. 1987. Bioenergetics of lactic acid bacteria: Cytoplasmic pH and osmotolerance. FEMS Microbiol. Rev. 46: 233-244. https://doi.org/10.1111/j.1574-6968.1987.tb02463.x
  20. Koebmann, B. J., H. V. Westerhoff, J. L. Snoep, D. Nilsson, and P. R. Jensen. 2002. The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J. Bacteriol. 184: 3909-3916. https://doi.org/10.1128/JB.184.14.3909-3916.2002
  21. Li, Z., S. F. Ding, Z. P. Li, and T. W. Tan. 2006. $_L$-Lactic acid production by Lactobacillus casei fermentation with corn steep liquor-supplemented acid-hydrolysate of soybean meal. Biotechnol. J. 1: 1453-1458. https://doi.org/10.1002/biot.200600099
  22. Liu, L. M., Y. Li, G. C. Du, and J. Chen. 2006. Increasing glycolytic flux in Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation. J. Appl. Microbiol. 100: 1043-1053. https://doi.org/10.1111/j.1365-2672.2006.02871.x
  23. Lopez de Felipe, F. and J. Hugenholtz. 2001. Purification and characterization of the water forming NADH-oxidase from Lactococcus lactis. Int. Dairy J. 11: 37-44. https://doi.org/10.1016/S0958-6946(01)00031-0
  24. Maas, R. H. W., R. R. Bakker, M. L. A. Jansen, D. Visser, E. De Jong, G. Eggink, and R. A. Weusthuis. 2008. Lactic acid production from lime-treated wheat straw by Bacillus coagulans: Neutralization of acid by fed-batch addition of alkaline substrate. Appl. Microbiol. Biotechnol. 78: 751-758. https://doi.org/10.1007/s00253-008-1361-1
  25. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  26. Nakamura, T., Y. Ogata, S. Hamada, and K. Ohta. 1996. Ethanol production from Jerusalem artichoke tubers by Aspergillus niger and Saccharomyces cerevisiae. J. Ferment. Bioeng. 81: 564-566. https://doi.org/10.1016/0922-338X(96)81482-6
  27. Okano, K., Q. Zhang, S. Shinkawa, S. Yoshida, T. Tanaka, H. Fukuda, and A. Kondo. 2009. Efficient production of optically pure $_D$-lactic acid from raw corn starch using genetically modified $_L$-lactate dehydrogenase gene-deficient and ${\alpha}$-amylase-secreting Lactobacillus plantarum. Appl. Environ. Microbiol. 75: 462-467. https://doi.org/10.1128/AEM.01514-08
  28. Pandey, A., C. R. Soccol, P. Selvakumar, V. T. Soccol, N. Krieger, and J. D. Fontana. 1999. Recent developments in microbial inulinases. Appl. Biochem. Biotechnol. 81: 35-52. https://doi.org/10.1385/ABAB:81:1:35
  29. Parkin, K. L. 2003. Putting kinetic principles into practice, pp. 181-191. In A. G. Marangoni (ed.). Enzyme Kinetics. John Wiley & Sons, Inc., U.S.A.
  30. Qi, B. K. and Y. Risheng. 2007. (L)-Lactic acid production from Lactobacillus casei by solid state fermentation using rice straw. Bioresoueces 2: 419-429.
  31. Romani, A., R. Yanez, G. Garrote, and J. L. Alonso. 2008. SSF production of lactic acid from cellulosic biosludges. Bioresour. Technol. 99: 4247-4254. https://doi.org/10.1016/j.biortech.2007.08.051
  32. Russell, J. B. and F. Diez-Gonzalez. 1998. The effects of fermentation acids on bacterial growth. Adv. Microb. Physiol. 39: 205-234.
  33. Sanchez, C., A. R. Neves, J. Cavalheiro, M. M. dos Santos, N. Garcia-Quintans, P. Lopez, and H. Santos. 2008. Contribution of citrate metabolism to the growth of Lactococcus lactis CRL264 at low pH. Appl. Environ. Microbiol. 74: 1136-1144. https://doi.org/10.1128/AEM.01061-07
  34. Stephanopoulos, G. N., A. A. Aristidou, and J. Nielsen. 1998. Metabolic Engineering. Academic Press, New York.
  35. Tan, T. W. 2008. Biochemical Engineering, pp. 15-30. Chemical Industry Press, Beijing.
  36. Torino, M. I., M. P. Taranto, and G. Font de Valdez. 2005. Citrate catabolism and production of acetate and succinate by Lactobacillus helveticus ATCC 15807. Appl. Microbiol. Biotechnol. 69: 79-85. https://doi.org/10.1007/s00253-005-1949-7
  37. Wilks, J. C., R. D. Kitko, S. H. Cleeton, G. E. Lee, C. S. Ugwu, B. D. Jones, S. S. BonDurant, and J. L. Slonczewski. 2009. Acid and base stress and transcriptomic responses in Bacillus subtilis. Appl. Environ. Microbiol. 75: 981-990. https://doi.org/10.1128/AEM.01652-08
  38. Yun, J. S., Y. J. Wee, J. N. Kim, and H. W. Ryu. 2004. Fermentative production of $_{DL}$-lactic acid from amylase-treated rice and wheat bran hydrolyzate by a novel lactic acid bacterium, Lactobacillus sp. Biotechnol. Lett. 26: 845-848.

Cited by

  1. Simultaneous saccharification and cofermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media vol.4, pp.None, 2011, https://doi.org/10.1186/1754-6834-4-22
  2. Improvement of l-lactic acid production by osmotic-tolerant mutant of Lactobacillus casei at high temperature vol.89, pp.1, 2010, https://doi.org/10.1007/s00253-010-2868-9
  3. THE EFFECT OF TEMPERATURE ON L-LACTIC ACID PRODUCTION AND METABOLITE DISTRIBUTION OFLactobacillus casei vol.42, pp.6, 2010, https://doi.org/10.1080/10826068.2012.665114
  4. Production of Fermentation Feedstock from Jerusalem Artichoke Tubers and its Potential for Polyhydroxybutyrate Synthesis vol.4, pp.2, 2010, https://doi.org/10.1007/s12649-012-9154-2
  5. Biorefinery products from the inulin-containing crop Jerusalem artichoke vol.35, pp.4, 2010, https://doi.org/10.1007/s10529-012-1104-3
  6. Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing vol.108, pp.1, 2010, https://doi.org/10.1007/s10482-015-0476-5
  7. Current Advances in Separation and Purification of Second-Generation Lactic Acid vol.49, pp.2, 2010, https://doi.org/10.1080/15422119.2019.1590412
  8. Lactic acid production – producing microorganisms and substrates sources-state of art vol.6, pp.10, 2020, https://doi.org/10.1016/j.heliyon.2020.e04974
  9. Use of glycerol waste in lactic acid bacteria metabolism for the production of lactic acid: State of the art in Poland vol.19, pp.1, 2010, https://doi.org/10.1515/chem-2021-0073
  10. Optimization of Inulin Hydrolysis by Penicillium lanosocoeruleum Inulinases and Efficient Conversion Into Polyhydroxyalkanoates vol.9, pp.None, 2021, https://doi.org/10.3389/fbioe.2021.616908
  11. Fermentation as a Strategy for Bio-Transforming Waste into Resources: Lactic Acid Production from Agri-Food Residues vol.7, pp.1, 2010, https://doi.org/10.3390/fermentation7010003