DOI QR코드

DOI QR Code

A Novel Selenium- and Copper-Containing Peptide with Both Superoxide Dismutase and Glutathione Peroxidase Activities

  • Zou, Xian-Feng (Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University) ;
  • Ji, Yue-Tong (Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University) ;
  • Gao, Gui (Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University) ;
  • Zhu, Xue-Jun (Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University) ;
  • Lv, Shao-Wu (Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University) ;
  • Yan, Fei (Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University) ;
  • Han, Si-Ping (Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University) ;
  • Chen, Xing (Key Laboratory of Agricultural Products Processing, Changchun University) ;
  • Gao, Chang-Cheng (Key Laboratory of Agricultural Products Processing, Changchun University) ;
  • Liu, Jun-Qiu (State Key Laboratory of Supramolecular Structure and Materials, Jilin University) ;
  • Luo, Gui-Min (Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University)
  • Published : 2010.01.31

Abstract

Superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) play crucial roles in balancing the production and decomposition of reactive oxygen species (ROS) in living organisms. These enzymes act cooperatively and synergistically to scavenge ROS. In order to imitate the synergism of these enzymes, we designed and synthesized a novel 32-mer peptide (32P) on the basis of the previous 15-mer peptide with GPX activity and a 17-mer peptide with SOD activity. Upon the selenation and chelation of copper, the 32-mer peptide was converted to a new Se- and Cu-containing 32-mer peptide (Se-Cu-32P) that displayed both SOD and GPX activities, and its kinetics was studied. Moreover, the novel peptide was demonstrated to be able to better protect vero cells from the injury induced by the xanthine oxidase (XOD)/xanthine/$Fe^{2+}$ damage system than its parents. Thus, this bifunctional enzyme imitated the synergism of SOD and GPX and could be a better candidate of therapeutic medicine.

Keywords

References

  1. Aslan, M. and T. Ozben. 2004. Reactive oxygen and nitrogen species in Alzheimer's disease. Curr. Alzheimer Res. 1: 111-119. https://doi.org/10.2174/1567205043332162
  2. Babizhayev, M. A. 1996. Failure to withstand oxidative stress induced by phospholipid hydroperoxides as a possible cause of the lens opacities in systemic diseases and ageing. Biochim. Biophys. Acta 1315: 87-99. https://doi.org/10.1016/0925-4439(95)00091-7
  3. Baker, K., C. B. Marcus, K. Huffman, H. Kruk, B. Malfroy, and S. R. Doctrow. 1998. Synthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: A key role for reactive oxygen species in ischemic brain injury. J. Pharmacol. Exp. Ther. 284: 215-221.
  4. Chance, B., H. Sies, and A. Boveris. 1979. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59: 527-605.
  5. Flohe, L., G. Loschen, W. A. Gunzler, and E. Eichele. 1972. Glutathione peroxidase, V. The kinetic mechanism. Hoppe-Seylers Z. Physiol. Chem. 353: 987-999. https://doi.org/10.1515/bchm2.1972.353.1.987
  6. Flohe, L. and F. Otting. 1984. Superoxide dismutase assays. Methods Enzymol. 105: 93-104. https://doi.org/10.1016/S0076-6879(84)05013-8
  7. Henle, E. S. and S. Linn. 1997. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J. Biol. Chem. 272: 19095-19098. https://doi.org/10.1074/jbc.272.31.19095
  8. Khan, A. U. and M. Kasha. 1994. Singlet molecular oxygen in the Haber-Weiss reaction. Proc. Natl. Acad. Sci. U.S.A. 91: 12365-12367. https://doi.org/10.1073/pnas.91.26.12365
  9. Klayman, D. L. and T. S. Griffin. 1973. Reaction of selenium with sodium borohydride in protic solvents. A facile method for the introduction of selenium into organic molecules. J. Am. Chem. Soc. 95: 197-199. https://doi.org/10.1021/ja00782a034
  10. Liu, R., I. Y. Liu, X. Bi, R. F. Thompson, S. R. Doctrow, B. Malfroy, and M. Baudry. 2003. Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc. Natl. Acad. Sci. U.S.A. 100: 8526-8531.
  11. Luo, G. M., H. P. Chen, and Y. H. Cheng. 1988. A new metalpeptide complex displays the activity of superoxide dismutase. Ann. N. Y. Acad. Sci. 542: 79-82. https://doi.org/10.1111/j.1749-6632.1988.tb25810.x
  12. Mao, G. D., P. D. Thomas, G. D. Lopaschuk, and M. J. Poznansky. 1993. Superoxide dismutase (SOD)-catalase conjugates. Role of hydrogen peroxide and the Fenton reaction in SOD toxicity. J. Biol. Chem. 268: 416-420.
  13. Rodriguez, R. and R. Redman. 2005. Balancing the generation and elimination of reactive oxygen species. Proc. Natl. Acad. Sci. U.S.A. 102: 3175-3176. https://doi.org/10.1073/pnas.0500367102
  14. Rong, Y., S. R. Doctrow, G. Tocco, and M. Baudry. 1999. EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology. Proc. Natl. Acad. Sci. U.S.A. 96: 9897-9902. https://doi.org/10.1073/pnas.96.17.9897
  15. Sohal, R. S., A. Agarwal, S. Agarwal, and W. C. Orr. 1995. Simultaneous overexpression of copper- and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J. Biol. Chem. 270: 15671-15674. https://doi.org/10.1074/jbc.270.26.15671
  16. Stibilj, V., D. Mazej, and I. Falnoga. 2003. A study of low level selenium determination by hydride generation atomic fluorescence spectrometry in water soluble protein and peptide fractions. Anal. Bioanal. Chem. 377: 1175-1183. https://doi.org/10.1007/s00216-003-2182-9
  17. Sun, Y., T. Li, H. Chen, K. Zhang, K. Zheng, Y. Mu, et al. 2004. Selenium-containing 15-mer peptides with high glutathione peroxidase-like activity. J. Biol. Chem. 279: 37235-37240. https://doi.org/10.1074/jbc.M403032200
  18. Tainer, J. A., E. D. Getzoff, J. S. Richardson, and D. C. Richardson. 1983. Structure and mechanism of copper, zinc superoxide dismutase. Nature 306: 284-287. https://doi.org/10.1038/306284a0
  19. Thomas, M. P., K. Chartrand, A. Reynolds, V. Vitvitsky, R. Banerjee, and H. E. Gendelman. 2007. Ion channel blockade attenuates aggregated alpha synuclein induction of microglial reactive oxygen species: Relevance for the pathogenesis of Parkinson's disease. J. Neurochem. 100: 503-519. https://doi.org/10.1111/j.1471-4159.2006.04315.x
  20. Touyz, R. M. 2004. Reactive oxygen species and angiotensin II signaling in vascular cells-implications in cardiovascular disease. Braz. J. Med. Biol. Res. 37: 1263-1273. https://doi.org/10.1590/S0100-879X2004000800018
  21. Yu, H., Y. Ge, Y. Wang, C. T. Lin, J. Li, X. Liu, et al. 2007. A fused selenium-containing protein with both GPx and SOD activities. Biochem. Biophys. Res. Commun. 358: 873-878. https://doi.org/10.1016/j.bbrc.2007.05.007
  22. Yu, H., J. Liu, J. Li, T. Zang, G. Luo, and J. Shen. 2005. Protection of mitochondrial integrity from oxidative stress by selenium-containing glutathione transferase. Appl. Biochem. Biotechnol. 127: 133-142. https://doi.org/10.1385/ABAB:127:2:133
  23. Wilson, S. R., P. A. Zucker, R. R. C. Huang, and A. Spector. 1989. Development of synthetic compounds with glutathione peroxidase activity. J. Am. Chem. Soc. 111: 5936-5939. https://doi.org/10.1021/ja00197a065
  24. Wu, Z. P. and D. Hilvert. 1990. Selenosubtilisin as a glutathione peroxidase mimic. J. Am. Chem. Soc. 112: 5647-5648. https://doi.org/10.1021/ja00170a043

Cited by

  1. A novel 65-mer peptide imitates the synergism of superoxide dismutase and glutathione peroxidase vol.43, pp.12, 2011, https://doi.org/10.1016/j.biocel.2011.08.019
  2. Characterization of selenium‐containing glutathione transferase zeta1–1 with high GPX activity prepared in eukaryotic cells vol.26, pp.1, 2010, https://doi.org/10.1002/jmr.2241
  3. A novel 76-mer peptide mimic with the synergism of superoxide dismutase and glutathione peroxidase vol.54, pp.5, 2010, https://doi.org/10.1007/s11626-018-0240-z