References
- Aslan, M. and T. Ozben. 2004. Reactive oxygen and nitrogen species in Alzheimer's disease. Curr. Alzheimer Res. 1: 111-119. https://doi.org/10.2174/1567205043332162
- Babizhayev, M. A. 1996. Failure to withstand oxidative stress induced by phospholipid hydroperoxides as a possible cause of the lens opacities in systemic diseases and ageing. Biochim. Biophys. Acta 1315: 87-99. https://doi.org/10.1016/0925-4439(95)00091-7
- Baker, K., C. B. Marcus, K. Huffman, H. Kruk, B. Malfroy, and S. R. Doctrow. 1998. Synthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: A key role for reactive oxygen species in ischemic brain injury. J. Pharmacol. Exp. Ther. 284: 215-221.
- Chance, B., H. Sies, and A. Boveris. 1979. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59: 527-605.
- Flohe, L., G. Loschen, W. A. Gunzler, and E. Eichele. 1972. Glutathione peroxidase, V. The kinetic mechanism. Hoppe-Seylers Z. Physiol. Chem. 353: 987-999. https://doi.org/10.1515/bchm2.1972.353.1.987
- Flohe, L. and F. Otting. 1984. Superoxide dismutase assays. Methods Enzymol. 105: 93-104. https://doi.org/10.1016/S0076-6879(84)05013-8
- Henle, E. S. and S. Linn. 1997. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J. Biol. Chem. 272: 19095-19098. https://doi.org/10.1074/jbc.272.31.19095
- Khan, A. U. and M. Kasha. 1994. Singlet molecular oxygen in the Haber-Weiss reaction. Proc. Natl. Acad. Sci. U.S.A. 91: 12365-12367. https://doi.org/10.1073/pnas.91.26.12365
- Klayman, D. L. and T. S. Griffin. 1973. Reaction of selenium with sodium borohydride in protic solvents. A facile method for the introduction of selenium into organic molecules. J. Am. Chem. Soc. 95: 197-199. https://doi.org/10.1021/ja00782a034
- Liu, R., I. Y. Liu, X. Bi, R. F. Thompson, S. R. Doctrow, B. Malfroy, and M. Baudry. 2003. Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc. Natl. Acad. Sci. U.S.A. 100: 8526-8531.
- Luo, G. M., H. P. Chen, and Y. H. Cheng. 1988. A new metalpeptide complex displays the activity of superoxide dismutase. Ann. N. Y. Acad. Sci. 542: 79-82. https://doi.org/10.1111/j.1749-6632.1988.tb25810.x
- Mao, G. D., P. D. Thomas, G. D. Lopaschuk, and M. J. Poznansky. 1993. Superoxide dismutase (SOD)-catalase conjugates. Role of hydrogen peroxide and the Fenton reaction in SOD toxicity. J. Biol. Chem. 268: 416-420.
- Rodriguez, R. and R. Redman. 2005. Balancing the generation and elimination of reactive oxygen species. Proc. Natl. Acad. Sci. U.S.A. 102: 3175-3176. https://doi.org/10.1073/pnas.0500367102
- Rong, Y., S. R. Doctrow, G. Tocco, and M. Baudry. 1999. EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology. Proc. Natl. Acad. Sci. U.S.A. 96: 9897-9902. https://doi.org/10.1073/pnas.96.17.9897
- Sohal, R. S., A. Agarwal, S. Agarwal, and W. C. Orr. 1995. Simultaneous overexpression of copper- and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J. Biol. Chem. 270: 15671-15674. https://doi.org/10.1074/jbc.270.26.15671
- Stibilj, V., D. Mazej, and I. Falnoga. 2003. A study of low level selenium determination by hydride generation atomic fluorescence spectrometry in water soluble protein and peptide fractions. Anal. Bioanal. Chem. 377: 1175-1183. https://doi.org/10.1007/s00216-003-2182-9
- Sun, Y., T. Li, H. Chen, K. Zhang, K. Zheng, Y. Mu, et al. 2004. Selenium-containing 15-mer peptides with high glutathione peroxidase-like activity. J. Biol. Chem. 279: 37235-37240. https://doi.org/10.1074/jbc.M403032200
- Tainer, J. A., E. D. Getzoff, J. S. Richardson, and D. C. Richardson. 1983. Structure and mechanism of copper, zinc superoxide dismutase. Nature 306: 284-287. https://doi.org/10.1038/306284a0
- Thomas, M. P., K. Chartrand, A. Reynolds, V. Vitvitsky, R. Banerjee, and H. E. Gendelman. 2007. Ion channel blockade attenuates aggregated alpha synuclein induction of microglial reactive oxygen species: Relevance for the pathogenesis of Parkinson's disease. J. Neurochem. 100: 503-519. https://doi.org/10.1111/j.1471-4159.2006.04315.x
- Touyz, R. M. 2004. Reactive oxygen species and angiotensin II signaling in vascular cells-implications in cardiovascular disease. Braz. J. Med. Biol. Res. 37: 1263-1273. https://doi.org/10.1590/S0100-879X2004000800018
- Yu, H., Y. Ge, Y. Wang, C. T. Lin, J. Li, X. Liu, et al. 2007. A fused selenium-containing protein with both GPx and SOD activities. Biochem. Biophys. Res. Commun. 358: 873-878. https://doi.org/10.1016/j.bbrc.2007.05.007
- Yu, H., J. Liu, J. Li, T. Zang, G. Luo, and J. Shen. 2005. Protection of mitochondrial integrity from oxidative stress by selenium-containing glutathione transferase. Appl. Biochem. Biotechnol. 127: 133-142. https://doi.org/10.1385/ABAB:127:2:133
- Wilson, S. R., P. A. Zucker, R. R. C. Huang, and A. Spector. 1989. Development of synthetic compounds with glutathione peroxidase activity. J. Am. Chem. Soc. 111: 5936-5939. https://doi.org/10.1021/ja00197a065
- Wu, Z. P. and D. Hilvert. 1990. Selenosubtilisin as a glutathione peroxidase mimic. J. Am. Chem. Soc. 112: 5647-5648. https://doi.org/10.1021/ja00170a043
Cited by
- A novel 65-mer peptide imitates the synergism of superoxide dismutase and glutathione peroxidase vol.43, pp.12, 2011, https://doi.org/10.1016/j.biocel.2011.08.019
- Characterization of selenium‐containing glutathione transferase zeta1–1 with high GPX activity prepared in eukaryotic cells vol.26, pp.1, 2010, https://doi.org/10.1002/jmr.2241
- A novel 76-mer peptide mimic with the synergism of superoxide dismutase and glutathione peroxidase vol.54, pp.5, 2010, https://doi.org/10.1007/s11626-018-0240-z