DOI QR코드

DOI QR Code

IrMn 스핀밸브 박막소자의 폭 크기에 의존하는 자장감응도

Magnetic Sensitivity Depending on Width of IrMn Spin Valve Film Device

  • 최종구 (상지대학교 대학원 동서의료공학과) ;
  • 이상석 (상지대학교 대학원 동서의료공학과)
  • Choi, Jong-Gu (Dept. of Eastern-western Biomedical Engineering, Graduation, Sangji University) ;
  • Lee, Sang-Suk (Dept. of Eastern-western Biomedical Engineering, Graduation, Sangji University)
  • 발행 : 2010.04.30

초록

NiFe/Cu/NiFe/IrMn 스핀밸브 박막에 대해 Cu의 두께에 의존하는 자장감응도를 조사하였다. Ta(5 nm)/NiFe(8 nm)/Cu(3.5 nm)/NiFe(4 nm)/IrMn(8 nm)/Ta(2.5 nm) 다층박막 구조에 대해 측정한 Minor 자기저항 곡선에서 자기저항비, 자장감응도, 보자력, 층간상호교환결합력은 각각 1.46 %, 2.0 %/Oe, 2.6 Oe, 0.1 Oe 이었다. 광 리소그래피 공정으로 제작한 10가지 다른 폭 크기와 $4.45\;{\mu}m$의 길이를 갖는 GMR-SV 소자의 자장감응도는 폭 크기가 $10\;{\mu}m$에서 $1\;{\mu}m$까지 작아짐에 따라 0.3 %/Oe에서 0.06 %/Oe로 감소하였다.

The Cu thickness dependence of magnetic sensitivity for the NiFe/Cu/NiFe/IrMn spin valve multilayer was investigated. The magnetic properties measured by minor MR curves for the Ta(5 nm)/NiFe(8 nm)/Cu(3.5 nm)/NiFe(4 nm)/IrMn(8 nm)/Ta(2.5 nm) multilayer is MR = 1.46 %, MS = 2.0 %/Oe, $H_c\;=\;2.6\;Oe$, and $H_{int}\;=\;0.1\;Oe$. The magnetic sensitivities of GMR-SV devices with ten different widths and a same length of $4.45\;{\mu}m$ by fabricated by photo lithography decreased from 0.3 %/Oe to 0.06%/Oe as from a width of $10\;{\mu}m$ to $1\;{\mu}m$.

키워드

참고문헌

  1. J. M. Daughton, J. Magn. Magn. Maters. 192, 334 (1999). https://doi.org/10.1016/S0304-8853(98)00376-X
  2. D. A. Baker, Nature 405, 39 (2000). https://doi.org/10.1038/35011000
  3. G. Li, S. Sun, R. J. Wilson, R. L. White, N. Pourmand, and S.X. Wang, Sens. Acut. A 126, 98 (2006). https://doi.org/10.1016/j.sna.2005.10.001
  4. J. Miyakoshi, Prog. Im Biophysics, Mol. Bio. 87, 213 (2005). https://doi.org/10.1016/j.pbiomolbio.2004.08.008
  5. B. M. de Boer, J. A. H. M. Kahlman, T. P. G. H. Jansen, H.Duric, and J. Veen, Biosens. Bioelectron. 22, 2366 (2006). https://doi.org/10.1016/j.bios.2006.09.020
  6. D. K. Wood, K. K. Ni, D. R. Schmidt, and A. N. Cleland, Sens. Acut. A 120, 1 (2005). https://doi.org/10.1016/j.sna.2004.10.035
  7. D. W. Kim, J. H. Lee, M. J. Kim, and S. S. Lee, J. Magnetics14, 80 (2009). https://doi.org/10.4283/JMAG.2009.14.2.080
  8. S. H. Park, K. S. Soh, D. G. Hwang, J. R. Rhee, and S. S. Lee,J. Magnetics 13, 30 (2008). https://doi.org/10.4283/JMAG.2008.13.1.030
  9. W. H. Lee, D. G. Hwang, and S. S. Lee, J. Magnetics 14, 18(2009). https://doi.org/10.4283/JMAG.2009.14.1.018
  10. J. G. Choi, I. S. Ko, Y. M. Gong, M. H. Kim, Y. S. Park, D. G.Hwang, and S. S. Lee, J. Kor. Magn. Soc. (Korean) 19, 52(2009). https://doi.org/10.4283/JKMS.2009.19.2.052
  11. P. Bruno and C. Chappert, “Magnetism and Structure in Systems of Reduced Dimension”, p389-p399, Edited by R. F. C. Farrow et al., Plenum Press, New York (1993).
  12. M. A. Ruderman and C. Kittel, Phys. Rev., 96, 99 (1954) https://doi.org/10.1103/PhysRev.96.99
  13. T. Kasuya, Progr. Theor. Phys. 16, 45 (1956) https://doi.org/10.1143/PTP.16.45
  14. K. Yosida, Phys. Rev. 106, 893 (1957). https://doi.org/10.1103/PhysRev.106.893

피인용 문헌

  1. Detection Characteristics of a Red Blood Cell Coupled with Micron Magnetic Beads by Using GMR-SV Device vol.24, pp.4, 2014, https://doi.org/10.4283/JKMS.2014.24.4.101
  2. Use of a GMR-SV Device Below a Single Coil and Channel to Detect the Deformation Properties of Red Blood Cell Membranes pp.1543-186X, 2019, https://doi.org/10.1007/s11664-018-6617-7