DOI QR코드

DOI QR Code

NiFe/Cu/NiFe/IrMn 스핀밸브 박막소자의 자화 용이축에 따른 형상 자기이방성

Shape Magnetic Anisotropy on Magnetic Easy Axis of NiFe/Cu/NiFe/IrMn Spin Valve Thin Film

  • 최종구 (상지대학교 대학원 동서의료공학과) ;
  • 곽태준 (상지대학교 보건과학대학 한방의료공학과) ;
  • 이상석 (상지대학교 대학원 동서의료공학과) ;
  • 심정택 (상지대학교 이공과대학 응용물리전자학과)
  • Choi, Jong-Gu (Dept. of Eastern-western Biomedical Engineering, Graduation, Sangji University) ;
  • Kwak, Tae-Joon (Dept. of Oriental Biomedical Engineering, Sangji University) ;
  • Lee, Sang-Suk (Dept. of Eastern-western Biomedical Engineering, Graduation, Sangji University) ;
  • Sim, Jung-Taek (Dept. of Applied Physics and Electronics, Sangji University)
  • 발행 : 2010.04.30

초록

NiFe/Cu/NiFe/IrMn 스핀밸브 박막소자에 대해 자화 용이축에 의존하는 형상 자기이방성을 조사하였다. Ta(5 nm)/NiFe(8 nm)/Cu(2.3 nm)/NiFe(4 nm)/IrMn(8 nm)/Ta(2.5 nm) 다층박막을 증착할 때 350 Oe의 자기장으로 인가한 자화 용이축을 폭 방향 또는 길이 방향으로 설정하여 $1\;{\mu}m\;{\times}\;18\;{\mu}m$의 소자를 제작하였다. 2단자 방법으로 소자의 자기저항 곡선으로부터 자장감응도를 측정하고 자화 용이축에 따른 형상 자기이방성을 비교하였다. 측정한 소자 길이 방향의 센싱전류와 고정층의 자화 용이축이 소자 폭방향 각도가 GMR-SV 소자를 바이오센서로 활용하는데 중요한 요인임을 확인하였다.

The GMR-SV (giant magnetoresistance-spin valve) device depending on the micro patterned features according to two easy directions of longitudinal and transversal axes has been studied. The GMR-SV multilayer structure was Ta(5 nm)/NiFe(8 nm)/Cu(2.3 nm)/NiFe(4 nm)/IrMn(8 nm)/Ta(2.5 nm). The applied anisotropy direction of the GMR-SV thin film was performed under the magnitude of 300 Oe using by permanent magnet during the deposition. The size of micro patterned device was a $1\;{\times}\;18\;{\mu}m^2$ after the photo lithography process. In the aspects of the shape magnetic anisotropy effect, there are two conditions of fabrication for GMR-SV device. Firstly, the direction of sensing current was perpendicular to the magnetic easy axis of the pinned NiFe/IrMn bilayer with the transversal direction of device. Secondly, the direction of shape magnetic anisotropy was same to the magnetic easy axis of the free NiFe layer with the longitudinal direction of device.

키워드

참고문헌

  1. D. A. Baker, Nature 405, 39 (2000). https://doi.org/10.1038/35011000
  2. G. Li, S. Sun, R. J. Wilson, R. L. White, N. Pourmand, and S. X. Wang, Sens. Acut. A 126, 98 (2006). https://doi.org/10.1016/j.sna.2005.10.001
  3. D. L. Graham, H. A. Feliciano, P. P. Fretias, L. A. Clarke, and M. D. Amaral, Sens. Acut. B 107, 936 (2005). https://doi.org/10.1016/j.snb.2004.12.071
  4. S. H. Park, K. S. Soh, M. C. Ahn, D. G. Hwang, and S. S. Lee,J. Kor. Magn. Soc. 16, 157S (2006). https://doi.org/10.4283/JKMS.2006.16.3.157
  5. S. S. Lee, S. H. Park, and K. S. Soh, Sae Mulli 52, 564 (2006).
  6. B. M. de Boer, J. A. H. M. Kahlman, T. P. G. H. Jansen, H.Duric, and J. Veen, Biosens. Bioelectron. 22, 2366 (2006). https://doi.org/10.1016/j.bios.2006.09.020
  7. J. H. Min, A. Y. Song, Y. K. Kim, and J. H. Wu, J. Kor. Magn. Soc. 19, 34 (2009). https://doi.org/10.4283/JKMS.2009.19.1.028
  8. D. K. Wood, K. K. Ni, D. R. Schmidt, and A. N. Cleland, Sens. Acut. A 120, 1 (2005). https://doi.org/10.1016/j.sna.2004.10.035
  9. S. S. Lee, D. G. Hwang, J. K. Kim, and K. Rhie, J. Korean Phys. Soc. 40, 484 (2002).
  10. D. W. Kim, J. H. Lee, M. J. Kim, and S. S. Lee, J. Magnetics14, 80 (2009). https://doi.org/10.4283/JMAG.2009.14.2.080
  11. W. H. Lee, D. G. Hwang, and S. S. Lee, J. Magnetics 14, 18(2009). https://doi.org/10.4283/JMAG.2009.14.1.018
  12. S. H. Park, K. S. Soh, D. G. Hwang, J. R. Rhee, and S. S. Lee,J. Magnetics 13, 30 (2008). https://doi.org/10.4283/JMAG.2008.13.1.030
  13. J. G. Choi, I. S. Koh, Y. M. Gong, M. H. Kim, Y. S. Park, D. G.Hwang, and S. S. Lee, J. Kor. Magn. Soc. 19, 1 (2009). https://doi.org/10.4283/JKMS.2009.19.1.001

피인용 문헌

  1. Post Annealing Treatment Introducing an Isotropy Magnetorsistive Property of Giant Magnetoresistance-Spin Valve Film for Bio-sensor vol.23, pp.3, 2013, https://doi.org/10.4283/JKMS.2013.23.3.098
  2. Detection Characteristics of a Red Blood Cell Coupled with Micron Magnetic Beads by Using GMR-SV Device vol.24, pp.4, 2014, https://doi.org/10.4283/JKMS.2014.24.4.101