• Title/Summary/Keyword: magnetic easy axis

Search Result 85, Processing Time 0.051 seconds

Induced Magnetic Anisotropy of Sputtered FeN Films Due to Substrate Tilting

  • Park, Y.;S. Ryu;S. Jo
    • Journal of Magnetics
    • /
    • v.2 no.1
    • /
    • pp.22-24
    • /
    • 1997
  • FeN thin films were deposited by RF-reactive diode sputtering to investigate magnetic characteristics variation due to substrate tilt during the film deposition, and their magnetic properties were measured by VSM, SEM and AFM. When the substrate tilt pivot edges were parallel to the applied field, the magnetic anisotropy was increased When the substrate tilt pivot edges were perpendicular to the applied field, the easy magnetization axis became the hard magnetization axis, and the hard axis became the easy axis as the tilt angles were increased. The reason is believed to be due to the fact that the tilt induced shape magnetic anisotropy became larger than the field induced magnetic anisotropy by DC magnetic field as the crystal grains are enlongated along the substrate tilt pivot edges due to "oblique incidence anisotropy" commonly found in eveporated thin films.

  • PDF

Uniaxial Magnetic Anistotropy of a NiO-Spin Valve Device

  • Lee, Won-Hyung;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • v.14 no.1
    • /
    • pp.18-22
    • /
    • 2009
  • The shape anisotropy effect of a giant magnetoresistance-spin valves (GMR-SV) device with a glass/NiO/NiFe/CoFe/Cu/CoFe/NiFe layered structure for use in the detection of magnetic property of molecules within a cell was investigated. The patterned device was given uniaxial anisotropy during the sputtering deposition and vacuum post-annealing, which was performed at $200^{\circ}C$ under a 300 Oe magnetic field. The pattern size of the device, which was prepared through the photolithography process, was $2{\times}15\;{\mu}m^2$. The experimental results confirmed that the best design for a GMR-SV device to be used as a biosensor is to have both the axis sensing current and the easy axis of the pinned NiO/NiFe/CoFe triple layer oriented in the direction of the device's width, while the easy axis of the free CoFe/NiFe bilayer should be pointed along the long axis of the device.

Magnetic Creep in Narrow Channel (좁은 Channel에서의 자기적 Creep)

  • 박영문
    • 전기의세계
    • /
    • v.23 no.2
    • /
    • pp.55-61
    • /
    • 1974
  • Nature of magnetic creep phenomena in low coercive force films(Ni 80%-Fe 20%) in form of narrow channels imbedded in high coercive force films is studied in this work. Aluminium is evaporated on the hot glass substrate and eched free in the shape of narrow channels by photoetoetching method. then, Permalloy(Ni 80%, Fe 20%) is deposited on these Aluminium substrate under the uniform field of 30(Oe) to introduce anisotropy. Permalloy film on Al has a high coercive force and one on the substrate devoid of Al has how coercive force. Magnetic revers domain which is introduced at the end of channel grows under the a.c field in hard axis direction, in spite of very weak d.c field in easy axis direction. This creeping is investigated as a function of external fields and channel widths. Permalloy film thickness is 500.angs.-900.angs. and channel widths are 40, 51, 65, 81, 115.mu. respectively. Creeping increases as external field increases while it decreases with channel width decrease. Creep velocity in channels depends on the a.c field along hard axis, d.c field along easy axis and channel widths and its range is 1-10cm/sec in this experiment. From study of dependence of creep velocity on channel width, it can be concluded that creep velocity is expressed in form of v=v$_{0}$ exp .alpha.(H-H$_{0}$) where .alpha. is a function of a.c field along hard axis and H is driving d.c field along easy axis, H$_{0}$ is not a coercive force of film as usuall expected but the d.c threshold field along easy axis which is a function of channel width. This characteristic is also confirmed by the study of dependence of creep velocity upon easy axis field strength. Value of .alpha. obtained is 1.3-2.3cm/sec We depending upon film charactor, hard axis field strength and frequency.uency.

  • PDF

Interfacial Magnetic Anisotropy of Co90Zr10 on Pt Layer

  • Gil, Jun-Pyo;Seo, Dong-Ik;Bae, Gi-Yeol;Park, Wan-Jun;Choe, Won-Jun;No, Jae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.356.2-356.2
    • /
    • 2014
  • Spin Transfer Torque (STT) is of great interest in data writing scheme for the Magneto-resistive Random Access Memory (MRAM) using Magnetic Tunnel Junction (MTJ). Scalability for high density memory requires ferromagnetic electrodes having the perpendicular magnetic easy axis. We investigated CoZr as the ferromagnetic electrode. It is observed that interfacial magnetic anisotropy is preferred perpendicular to the plane with thickness dependence on the interfaces with Pt layer. The anisotropy energy (Ku) with thickness dependence shows a change of magnetic-easy-axis direction from perpendicular to in-plane around 1.2 nm of CoZr. The interfacial anisotropy (Ki) as the directly related parameters to switching and thermal stability, are estimated as $1.64erg/cm^2$ from CoZr/Pt multilayered system.

  • PDF

Shape Magnetic Anisotropy on Magnetic Easy Axis of NiFe/Cu/NiFe/IrMn Spin Valve Thin Film (NiFe/Cu/NiFe/IrMn 스핀밸브 박막소자의 자화 용이축에 따른 형상 자기이방성)

  • Choi, Jong-Gu;Kwak, Tae-Joon;Lee, Sang-Suk;Sim, Jung-Taek
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.2
    • /
    • pp.35-40
    • /
    • 2010
  • The GMR-SV (giant magnetoresistance-spin valve) device depending on the micro patterned features according to two easy directions of longitudinal and transversal axes has been studied. The GMR-SV multilayer structure was Ta(5 nm)/NiFe(8 nm)/Cu(2.3 nm)/NiFe(4 nm)/IrMn(8 nm)/Ta(2.5 nm). The applied anisotropy direction of the GMR-SV thin film was performed under the magnitude of 300 Oe using by permanent magnet during the deposition. The size of micro patterned device was a $1\;{\times}\;18\;{\mu}m^2$ after the photo lithography process. In the aspects of the shape magnetic anisotropy effect, there are two conditions of fabrication for GMR-SV device. Firstly, the direction of sensing current was perpendicular to the magnetic easy axis of the pinned NiFe/IrMn bilayer with the transversal direction of device. Secondly, the direction of shape magnetic anisotropy was same to the magnetic easy axis of the free NiFe layer with the longitudinal direction of device.

Basic Research on an Electro-Magnetic Compass Using a Magnetic Detect Elements (자기검출소자를 이용한 전자자기컴퍼스의 기초적 연구)

  • 안영화
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.3
    • /
    • pp.182-188
    • /
    • 1994
  • In recent years, navigational and fisheries instruments are rapidly advancing. Especially data processing. data transferring and data interchange throughout the digital signals has been in high progress. Even though the ship's heading is also provided by a gyro-compass, an electro-magnetic compass studying by us currently is easy to issue adequate data to instruments requiring the information for the ship's heading. especially in small fishing boats. As the main element of the electro-magnetic compass is a three-axis magnetic sensors, the developing of the high performance sensor is in highly necessity in the beginning. This paper describes on the development of electro-magnetic compass of three-axis fixed type by using three-axis detection new type magnetic sensor without gimbals. even though usual electro-magnetic compass have to need necessarily a gimbal system in order to keep horizontal condition of the compass.

  • PDF

Magnetic Circular Dichroism Study of co Thin Films on Pd(111) Surface

  • Kim, Wookje;Kim, Wondong;Kim, Hyunjo;Kim, Jae-Young;Hoon Kho;Park, J.H.;Oh, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.169-169
    • /
    • 1999
  • We studied magnetic properties of co thin films deposited on Pd (111) surface, which attracted much attention recently due to the perpendicular magnetic anisotropy, using magnetic circular dichroism(MCD). Special attention was paid on the effect of Pd capping and interface roughness on the direction of magnetic easy axis, and for that purpose MCD signals for all Co thicknesses were measured with two different ways : in-plane and out-of-plane geometry. In case of bare Co films deposited on smooth Pd(111) surface, no MCD signal was observed under 4$\AA$ co thickness. At 4$\AA$ Co thickness, MCD signal at the out-of-plane geometry was observed, and for thicker Co films, only in-plane MCD signal was measured. This type of magnetic easy axis transition has been reported for other cases like Co/Pt system. The effect of 5$\AA$ Pd capping on these bare Co films made an remarkable change on the transition of magnetic easy axis. Out-of-plane MCD signals exists up to 20$\AA$ Co thickness, and disappears at 24$\AA$ Co thickness. In-plane MCD signals first appears at 10$\AA$ Co thickness and gradually increases up to 24$\AA$ Co thickness. Between 10$\AA$ and 20$\AA$ Co thickness, in-plane and out-of-plane MCD signal coexist. The formation of multi-domain structure or the existence of tilted magnetic easy axis is an possible scenario for such an interesting coexistence. The effect of interface roughness was also tested by measuring MCD signal on Co films deposited on un-annealed Pd(111) surface. Out-of-plane MCD signal was observed up to 8$\AA$ Co thickness and the anisotropy of MCD signal at 4$\AA$ Co thickness was very large with respect to that of Co film deposited on the smooth substrate. Above 8$\AA$ thickness, there exists only in-plane MCD signal. From above results, it was concluded that both Pd capping and interface roughness induce and reenforce the perpendicular magnetic anisotropy. The large perpendicular magnetic anisotropy of Co/Pd multilayer system made by sputtering method can be well understood from our results.

  • PDF

Relation Between Magnetization Easy Axis and Anisotropic Magnetoresistance in Permalloy Films (퍼멀로이 박막의 자화 용이축과 자기저항 변화와의 상관관계에 대한 연구)

  • Hwang, Tae-Jong;Ryu, Yeung-Shik;Kwon, Jin-Hyuk;Kim, Ki-Hyeon;Kim, Dong-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.28-31
    • /
    • 2008
  • We studied the effect of easy magnetization axis orientation with respect to the strip direction by measuring the magnetoresistance(MR), the magneto-optic Kerr effect(MOKE), and real-time domain evolution. The five strips were patterned on a single chip with the easy axis orientation of each strip relative to the longitudinal direction by around $0^{\circ}$, $18^{\circ}$, $36^{\circ}$, $54^{\circ}$ and $72^{\circ}$, respectively. The overall shape of field dependent MR was mostly governed by the anisotropy magnetoresistnace. The relative change of the longitudinal MR was significantly increased with increasing angle between the easy axis and strip direction, whereas, the transverse MR variation rate was decreased with increasing angle. Several MR steps were observed during the magnetization reversal, and the simultaneous measurement of the MOKE and the domain images identified that the MR steps were associated with evolution of the oppositely directed magnetic domain.

Post Annealing Treatment Introducing an Isotropy Magnetorsistive Property of Giant Magnetoresistance-Spin Valve Film for Bio-sensor (바이오센서용 거대자기저항-스핀밸브 박막이 등방성 자기저항 특성을 갖게 하는 후열처리 조건 연구)

  • Khajidmaa, P.;Park, Kwang-Jun;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.3
    • /
    • pp.98-103
    • /
    • 2013
  • The magnetic easy axis of the ferromagnetic layer for the dual-type GMR-SV (giant magnetoresistance-spin valve) having NiFe/Cu/NiFe/IrMn/NiFe/Cu/NiFe multuilayer structure controlled by the post annealing treatment. The magnetoresistive curves of a dual-type IrMn based GMR-SV depending on the direction of the magnetic easy axis of the free and the pinned layers are measured by the different angles for the applied fields. By investigating the switching process of magnetization for an arbitrary measuring direction, the optimum annealing temperature having a steady and isotropy magnetic sensitivity of 2.0 %/Oe was $105^{\circ}C$. This result suggests that the in-plane orthogonal magnetization for the dual-type GMR-SV film can be used by a high sensitive biosensor.

Temperature dependence of exchange bias in Co/Ni anti-dot arrays

  • Seo, M.S.;Deshpande, N.G.;Lee, S.J.;Lee, Y.P.;Rhee, J.Y.;Kim, K.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.436-436
    • /
    • 2011
  • Recently, spintronic devices with submicron structures are widely investigated to take advantage of their unique micromagnetic properties. In this work, we study the temperature dependence of exchange bias in bilayer anti-dot arrays made by depositing Co (40 nm)/Ni (5 nm) ferromagnetic bilayer on Si substrate to form anti-dot arrays with a diameter $1{\mu}m$. The anti-dot patterning was done only for the upper Co layer, while the Ni underlayer was kept unperforated. The temperature dependences of magnetoresistance (MR) and exchange bias were studied along magnetic easy and hard axes. The in-plane MR measurements were performed using a physical-property measurement system (PPMS ; Quantum Design Inc.) at various temperatures. The standard in-line four-point probe configuration was used for the electrical contacts. As temperature was varied, the MR data were obtained in which in-plane field (H=3 kOe) was applied in the directions along the hard and the easy axes with respect to the lattice plane. The temperature dependences of magnetic anisotropy and exchange bias were also studied along the magnetic easy and hard axes. As temperature decreases, the single peak splits into two peaks. While no exchange bias was observed along the magnetic easy axis, the exchange bias field steadily increased with decreasing temperature along the magnetic hard axis. These results were interpreted in connection with the magnetic anisotropy and the effect of the anti-dots in pinning domain wall motion along the respective direction.

  • PDF