References
- R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49. https://doi.org/10.2307/1995057
- D. E. Blair, Contact Manifolds in Riemannian Geometry, Springer-Verlag, Berlin-New York, 1976.
- D. E. Blair, Riemannian geometry of Contact and Symplectic Manifolds, Progess in Mathematics, Birkhauser Boston, 2002.
- A. Bonome, L. M. Hervella, and I. Rozas, On the classes of almost Hermitian structureson the tangent bundle of an almost contact metric manifold, Acta Math. Hungar. 56 (1990), no. 1-2, 29-37. https://doi.org/10.1007/BF01903702
- W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math. (2) 68 (1958), 721-734. https://doi.org/10.2307/1970165
- M. Fernandez, S. Ivanov, V. Munoz, and L. Ugarte, Nearly hypo structures and compact nearely Kahler 6-manifolds with conical singularities, J. London Math. Soc. 78 (2008), no. 3, 580-604. https://doi.org/10.1112/jlms/jdn044
- J. C. Gonzalez and D. Chinea, Quasi-Sasakian homogeneous structures on the generalized Heisenberg group H(p, 1), Proc. Amer. Math. Soc. 105 (1989), no. 1, 173-184. https://doi.org/10.2307/2046753
- A. Gray, Curvature identities for Hermitian and almost Hermitian manifolds, Tohoku Math. J. (2) 28 (1976), no. 4, 601-612. https://doi.org/10.2748/tmj/1178240746
- D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), no. 1, 1-27. https://doi.org/10.2996/kmj/1138036310
- R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. No. 22 (1957), iii+123 pp.
- G. B. Rizza, Varieta parakahleriane, Ann. Mat. Pura Appl. (4) 98 (1974), 47-61. https://doi.org/10.1007/BF02414012
- F. Tricerri and L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), no. 2, 365-397. https://doi.org/10.2307/1998660
- L. Vanhecke, Almost Hermitian manifolds with J-invariant Riemann curvature tensor, Rend. Sem. Mat. Univ. Politec. Torino 34 (1975/76), 487-498.
Cited by
- Riemannian submersions from almost contact metric manifolds vol.81, pp.1, 2011, https://doi.org/10.1007/s12188-011-0049-0