Browse > Article
http://dx.doi.org/10.4134/JKMS.2010.47.3.505

GRAY CURVATURE IDENTITIES FOR ALMOST CONTACT METRIC MANIFOLDS  

Mocanu, Raluca (FACULTY OF MATHEMATICS UNIVERSITY OF BUCHAREST)
Munteanu, Marian Ioan (FACULTY OF MATHEMATICS UNIVERSITY 'AL.I.CUZA' of IASI)
Publication Information
Journal of the Korean Mathematical Society / v.47, no.3, 2010 , pp. 505-521 More about this Journal
Abstract
Alfred Gray introduced in [8] three curvature identities for the class of almost Hermitian manifolds. Using the warped product construction and the Boothby-Wang fibration we will give an equivalent of these identities for the class of almost contact metric manifolds.
Keywords
almost Hermitian manifolds; almost contact metric manifolds; curvature identities; Boothby-Wang fibration; cone metric; cosymplectic manifolds; Sasakian manifolds; generalized Heisenberg group;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49.   DOI   ScienceOn
2 D. E. Blair, Contact Manifolds in Riemannian Geometry, Springer-Verlag, Berlin-New York, 1976.
3 D. E. Blair, Riemannian geometry of Contact and Symplectic Manifolds, Progess in Mathematics, Birkhauser Boston, 2002.
4 A. Bonome, L. M. Hervella, and I. Rozas, On the classes of almost Hermitian structureson the tangent bundle of an almost contact metric manifold, Acta Math. Hungar. 56 (1990), no. 1-2, 29-37.   DOI
5 W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math. (2) 68 (1958), 721-734.   DOI
6 M. Fernandez, S. Ivanov, V. Munoz, and L. Ugarte, Nearly hypo structures and compact nearely Kahler 6-manifolds with conical singularities, J. London Math. Soc. 78 (2008), no. 3, 580-604.   DOI   ScienceOn
7 F. Tricerri and L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), no. 2, 365-397.   DOI
8 L. Vanhecke, Almost Hermitian manifolds with J-invariant Riemann curvature tensor, Rend. Sem. Mat. Univ. Politec. Torino 34 (1975/76), 487-498.
9 A. Gray, Curvature identities for Hermitian and almost Hermitian manifolds, Tohoku Math. J. (2) 28 (1976), no. 4, 601-612.   DOI
10 J. C. Gonzalez and D. Chinea, Quasi-Sasakian homogeneous structures on the generalized Heisenberg group H(p, 1), Proc. Amer. Math. Soc. 105 (1989), no. 1, 173-184.   DOI
11 D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), no. 1, 1-27.   DOI
12 R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. No. 22 (1957), iii+123 pp.
13 G. B. Rizza, Varieta parakahleriane, Ann. Mat. Pura Appl. (4) 98 (1974), 47-61.   DOI