
J. Korean Math. Soc. 47 (2010), No. 3, pp. 505–521
DOI 10.4134/JKMS.2010.47.3.505

GRAY CURVATURE IDENTITIES FOR
ALMOST CONTACT METRIC MANIFOLDS

Raluca Mocanu and Marian Ioan Munteanu

Abstract. Alfred Gray introduced in [8] three curvature identities for
the class of almost Hermitian manifolds. Using the warped product con-
struction and the Boothby-Wang fibration we will give an equivalent of
these identities for the class of almost contact metric manifolds.

1. Introduction

In [8], A. Gray introduced three curvature identities, Ki, i = 1, 2, 3, for
almost Hermitian manifolds. These identities have important applications in
geometry and topology (for example, some other geometric objects can be
constructed on manifolds satisfying Ki, see e.g. [12, 13]).

A naturally arising question would be: which are the equivalent identities
for the almost contact manifolds?

Concerning this, A. Bonome, L. M. Hervella, and I. Rozas defined in [4]
Kiϕ-curvature identities (i = 1, 2, 3) for an almost contact metric manifold
(M, ϕ, ξ, η, g) by using the usual Hermitian structure on M × R (the product
manifold). Gray proved in [8] that Kaehlerian manifolds satisfy Ki, i = 1, 2, 3
(curvature identities for almost Hermitian manifolds). In the same spirit, in [4]
it is shown that cosymplectic manifolds satisfy Kiϕ-identities.

It is known that both cosymplectic and Sasakian manifolds are natural odd-
dimensional versions of Kaehlerian manifolds. We ask what happens if the
analogy with the Kaehlerian manifolds is extended to Sasakian manifolds? We
bear in mind the fact that a Riemannian manifold (M, g) is Sasakian if the
holonomy group of the metric cone on M : (C(M) = R+ ×M, g̃ = dt2 + t2g)
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reduces to a subgroup of U
(

m+1
2

)
, i.e., (C(M), g̃) is Kaehlerian. (Here m =

dim M .)

Inspired by this definition and by [4], we will take a different approach to
Gray curvature identities for almost contact metric manifolds. For this purpose
we will use the warped product and the Boothby-Wang fibration, two different
constructions which lead us to the same result.

1.1. Gray curvature identities

An almost Hermitian manifold (M, J, g) is said to satisfy Gray curvature
identities (K1), (K2) and respectively (K3), if its Riemann Christoffel curva-
ture tensor satisfies

(K1) R(X, Y, Z, W ) = R(X, Y, JZ, JW ),

(K2) R(X, Y, Z, W ) = R(JX, JY, Z, W )+R(JX, Y, JZ, W )+R(JX, Y, Z, JW ),

(K3) R(X, Y, Z, W ) = R(JX, JY, JZ, JW )

for all vector fields X, Y, Z, W on χ(M). Throughout this paper, the cur-
vature tensor is defined by RXY Z = ∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z for all
X, Y, Z ∈ χ(M) while the Riemann Christoffel curvature tensor is given by
R(X, Y, Z, W ) = −g(RXY Z, W ). The identity (K1) is often called Kaehler
identity. It is known the fact that there exist non Kaehler manifolds satisfying
(K1) identity (e.g. para-Kaehler manifolds, [11]).

2. Warped product manifolds

Singly warped products or simply warped products were first defined by Bishop
and O’Neill in [1] in order to construct Riemannian manifolds with negative
sectional curvature. Let (B, gB) and (F, gF ) be Riemannian manifolds and let
b : B −→ (0,∞) be a smooth function. The warped product M̃ = B ×b F is
the product manifold B × F endowed with the metric g̃ = gB ⊕ b2gF . More
precisely, if π : B × F −→ B and τ : B × F −→ F are natural projections, the
metric g is defined by

g̃ = π∗gB + (b ◦ π)2τ∗gF .

The function b is called warping function. If b ≡ 1, then we have a product
manifold.

If X, Y are tangent to B and Z, W tangent to F , then the Levi-Civita
connection ∇̃ of M̃ is given by

{
∇̃XY = ∇B

XY, ∇̃XZ = X(ln b)Z

∇̃ZW = ∇F
ZW − b2 gF (Z, W )∇B(ln b),

where ∇B and ∇F are the Levi-Civita connections on B, respectively on F ,
and ∇B(ln b) is the gradient of ln b with respect to the metric gB .
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Let (M , ϕ, ξ, η, g) be an almost contact metric manifold. Consider the
warped product manifold M̃ = R+ ×t M , where t > 0 is the global coordinate
of R+, i.e., the metric g̃ of M̃ is defined by

g̃ = dt2 + t2g.

Let an endomorphism on χ(M̃) defined by

J∂t = −1
t

ξ , JX = ϕX + tη(X)∂t, ∀X ∈ χ(M),

where ∂t = d
dt . For X̃ = (a,X) ∈ χ(M̃), a ∈ C∞(R+), X ∈ χ(M) we have

JX̃ = J(a, X) =
(
tη(X), ϕX − a

t
ξ
)

.

The proofs of the following propositions are straightforward.

Proposition 2.1. J is an almost complex structure compatible with the metric
g̃.

Proposition 2.2. The Levi-Civita connection ∇̃ of g̃ is given by:
{ ∇̃∂t∂t = 0, ∇̃X∂t = ∇̃∂tX = 1

t X

∇̃XY = ∇XY − tg(X,Y )∂t, X, Y ∈ χ(M).

Proposition 2.3. The covariant derivative of J is given by:




(∇̃∂tJ)∂t = (0, 0), (∇̃∂tJ)X = (0, 0)

(∇̃XJ)∂t = (0,− 1
t (∇Xξ + ϕX))

(∇̃XJ)Y = (t((∇Xη)(Y )− g(X, ϕY )), (∇Xϕ)Y − g(X,Y )ξ + η(Y )X).

Corollary 2.4. J is parallel if and only if{
(∇̃Xϕ)Y = g(X,Y )ξ − η(Y )X, (∇Xη)(Y ) = g(X,ϕY )

∇Xξ = −ϕX, X, Y ∈ χ(M)

i.e., (M̃, J, g̃) is Kaehler if and only if (M, ϕ, ξ, η, g) is Sasakian.

Proposition 2.5. For the curvature of the manifold M̃ we have
{

R̃(∂t, X)∂t = 0, R̃(X, Y )∂t = 0, R̃(∂t, X)Y = 0

R̃(X, Y )Z = R(X, Y )Z − g(Y, Z)X + g(X,Z)Y,

where R̃ (respectively R) are the curvature tensors for g̃ (respectively for g).
Moreover, the following relations hold:





R̃(∂t, X)(J∂t) = 0, R̃(∂t, X)(JY ) = 0

R̃(X, Y )(J∂t) = − 1
t [R(X,Y )ξ − η(Y )X + η(X)Y ]

R̃(X, Y )(JZ) = R(X, Y )(ϕZ)− g(Y, ϕZ)X + g(X, ϕZ)Y.
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In the following we compute expressions of the form g̃(R̃(A,B)(JC), JD).
The useful following expressions are obtained in the cases:

1. g̃(R̃(X,Y )(J∂t), JW )
= −t [g(R(X, Y )ξ, ϕW )− η(Y )g(X,ϕW ) + η(X)g(Y, ϕW )] ,

2. g̃(R̃(X,Y )(JZ), J∂t)
= −t [η(R(X,Y )(ϕZ))− η(X)g(Y, ϕZ) + η(Y )g(X,ϕZ)] ,

3. g̃(R̃(X,Y )(JZ), JW )
= t2 [g(R(X, Y )ϕZ, ϕW )− g(Y, ϕZ)g(X, ϕW ) + g(X, ϕZ)g(Y, ϕW )] .

Theorem 2.6. M̃ is (K1) if and only if

(1)

R(X, Y, Z, W )

= R(X,Y, ϕZ, ϕW )− g(X, ϕZ)g(Y, ϕW ) + g(Y, ϕZ)g(X,ϕW )

− g(Y,Z)g(X,W ) + g(X, Z)g(Y, W ).

Proof. M̃ is (K1) if and only if g̃(R̃(A,B)(JC), JD) = g̃(R̃(A,B)C, D)

for all A, B,C, D ∈ χ(M̃). We have:

1. g̃(R̃(X, Y )(J∂t), JW ) = g̃(R̃(X, Y )∂t,W )
=⇒ −t[g(R(X,Y )ξ, ϕW )− η(Y )g(X, ϕW ) + η(X)g(Y, ϕW )] = 0
=⇒ g(ϕ(R(X,Y )ξ − η(Y )X + η(X)Y ),W ) = 0 for every W

=⇒ R(X,Y )ξ − η(Y )X + η(X)Y ∈ ker(ϕ).

Thus,

(2) R(X, Y )ξ = η(Y )X − η(X)Y

since both terms have no ξ-component.

2. g̃(R̃(X, Y )(JZ), J∂t) = g̃(R̃(X, Y )Z, ∂t)

=⇒ g̃

(
R(X, Y )(ϕZ)− g(Y, ϕZ)X + g(X, ϕZ)Y,−1

t
ξ

)

= g̃ (R(X, Y )Z − g(Y, Z)X + g(X,Z)Y, ∂t)

=⇒ −1
t

t2η(R(X, Y )(ϕZ)− g(Y, ϕZ)X + g(X, ϕZ)Y ) = 0.

Thus we have obtained,

(3) R(X, Y )(ϕZ)− g(Y, ϕZ)X + g(X,ϕZ)Y ∈ ker(η).

3. g̃(R̃(X, Y )(JZ), JW ) = g̃(R̃(X,Y )Z, W )
=⇒ g̃(R(X, Y )(ϕZ)− g(Y, ϕZ)X + g(X, ϕZ)Y, ϕW + tη(W )∂t)

= g̃(R(X, Y )Z − g(Y, Z)X + g(X,Z)Y, W ).
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We obtain directly

g(R(X, Y )(ϕZ), ϕW )− g(Y, ϕZ)g(X,ϕW ) + g(X, ϕZ)g(Y, ϕW )

= g(R(X, Y )Z, W )− g(Y,Z)g(X, W ) + g(X, Z)g(Y, W )

and consequently

(4)

R(ϕW,ϕZ, X, Y )−R(W,Z,X, Y )

= g(Y, ϕZ)g(X, ϕW )− g(X, ϕZ)g(Y, ϕW )

+ g(X, Z)g(Y, W )− g(Y, Z)g(X, W ).

Note that (2) implies (3) and (4) implies (2). ¤

As consequences we have

R(ξ, Y, ξ, W ) = g(Y,W ),

R(ξ, Y, Z, W ) = R(ξ, Y, ϕZ, ϕW ) = 0,

R(X, Y, Z, W )− g(Y,W )g(X,Z) + g(X, W )g(Y, Z)

= R(X, Y, ϕZ, ϕW )− g(Y, ϕW )g(X, ϕZ) + g(X, ϕW )g(Y, ϕZ),

where X, Y, Z and W are orthogonal to ξ.

Definition 2.7. We say that an almost contact metric manifold satisfies (G1)-
identity if its curvature tensor fulfills (1).

Proposition 2.8. The curvature tensor of a Sasakian manifold satisfies (G1)
(see also Lemma 7.1 in [3]).

Proposition 2.9. Any contact manifold satisfying (G1) is Sasakian.

Proof. It is known (e.g. Proposition 7.6 from [3]) that a contact manifold is
Sasakian if and only if R(X,Y )ξ = η(Y )X − η(X)Y for all X and Y . ¤

Back to the cone manifold M̃ . We give:

Theorem 2.10. M̃ is (K2) if and only if

(5)

R(X, Y, Z, W )

= R(ϕX, Y, Z, ϕW ) + R(X, ϕY, Z, ϕW ) + R(X, Y, ϕZ, ϕW )

+ g(X,Z)η(W )η(Y )− g(Z, Y )η(X)η(W ).

Proof. M̃ is (K2) if and only if

R̃(A,B,C, D) = R̃(JA, B,C, JD) + R̃(A, JB, C, JD) + R̃(A,B, JC, JD),

where A,B, C and D are arbitrary vector fields on M̃ .
Three cases are essential:
1) A = ∂t, B = Y , C = ∂t, D = W which is trivial.
2) A = ∂t, B = Y , C = Z, D = W .
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One has:

R̃(J∂t, Y, Z, JW ) = −1
t
R̃(ξ, Y, Z, ϕW ),

R̃(∂t, JY, Z, JW ) = 0,

R̃(∂t, Y, JZ, JW ) = 0.

It follows that the right side is equal to:

−tg(ξ, R(Z, ϕW )Y − g(ϕW,Y )Z + g(Z, Y )ϕW ).

Since the left side vanishes, in this case we obtain

(6) R(ξ, Y, Z, ϕW ) = η(Z)g(ϕW,Y ) for every Y,Z, W ∈ χ(M).

3) A = X, B = Y , C = Z, D = W . One has

R̃(JX, Y, Z, JW ) = R̃(ϕX, Y, Z, ϕW ),

R̃(X,JY, Z, JW ) = R̃(X,ϕY, Z, ϕW ),

R̃(X,Y, JZ, JW ) = R̃(X,Y, ϕZ, ϕW ).
It follows that the right side is equal to

t2[R(ϕX, Y, Z, ϕW ) + R(X,ϕY,Z, ϕW ) + R(X,Y, ϕZ, ϕW )]+

+t2[−g(ϕW,ϕY )g(X, Z) + g(Z, Y )g(ϕX, ϕW )]
while the left side is equal to:

t2R(X, Y, Z, W ) + t2[−g(W,Y )g(X,Z) + g(Z, Y )g(X,W )],

and hence we have (5). Since (5) implies (6), we get the statement. ¤

As consequences one has

R(ξ, Y, ξ, W ) = g(Y,W ),

R(ξ, Y, Z,W ) = 0,

R(X, Y, Z,W ) = R(ϕX, Y, Z, ϕW ) + R(X, ϕY, Z, ϕW ) + R(X, Y, ϕZ, ϕW )

for all X, Y, Z,W orthogonal to ξ.

Definition 2.11. We say that an almost contact metric manifold satisfies
(G2)-identity if its curvature tensor fulfills (5).

Let us focus our attention to the third identity of Gray.

Theorem 2.12. The manifold M̃ is (K3) if and only if

(7)

R(X, Y, Z, W )

= R(ϕX,ϕY, ϕZ, ϕW )+g(X, Z)η(W )η(Y )−g(Z, Y )η(X)η(W )

+ g(Y, W )η(X)η(Z)− g(X, W )η(Y )η(Z)

for all X, Y, Z, W ∈ χ(M).
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Proof. M̃ is (K3) if and only if R̃(A,B, C, D) = R̃(JA, JB, JC, JD) for all
A,B, C,D ∈ χ(M̃).

The essential cases are:
1) A = ∂t, B = Y , C = ∂t, D = W .
The left member vanishes and the right member is equal to R(ξ, ϕY, ξ, ϕW )−

g(ϕW,ϕY ). We get

(8) R(ξ, ϕY, ξ, ϕW ) = g(ϕW,ϕY ).

2) A = ∂t, B = Y , C = Z, D = W .
The left hand vanishes and on the right hand we have R(ξ, ϕY, ϕZ, ϕW ).

We get

(9) R(ξ, ϕY, ϕZ, ϕW ) = 0.

3) A = X, B = Y , C = Z, D = W .
Again, the left part is equal to

t2[R(X, Y, Z, W )− g(Z, X)g(W,Y ) + g(Y, Z)g(X, W )]

and the right part is equal to

t2[R(ϕX,ϕY, ϕZ, ϕW )− g(ϕW,ϕY )g(ϕX,ϕZ) + g(ϕY, ϕZ)g(ϕX, ϕW )].

Hence (7) is proved. Note that (7) implies both (8) and (9). ¤

Consequently

R(ξ, Y, ξ, W ) = g(Y, W ),

R(ξ, Y, Z, W ) = 0,

R(X,Y, Z, W ) = R(ϕX, ϕY, ϕZ, ϕW )

for all X, Y, Z,W ∈ χ(M) orthogonal to ξ.

Definition 2.13. We say that an almost contact metric manifold satisfies
(G3)-identity if its curvature fulfills the relation (7).

3. The Boothby-Wang fibration

In this section we use the Boothby-Wang fibration [5] in order to strengthen
previous results.

Let M be a (2n + 1)-dimensional smooth manifold. A contact form on M is
a 1-form η satisfying

η ∧ (dη)n 6= 0.

We say that η endows M with a contact structure. It is clear that η induces
an orientation on M and hence there is a global non vanishing vector field ξ
on M so that η(ξ) = 1. If ξ is regular in the sense of Palais (see [10]), then the
contact structure (and also M) is called regular. If moreover M is compact,
one can consider the space of all orbits of ξ, i.e., N = M/ξ

thus obtaining a
smooth manifold. We have:
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Theorem A ([5]). Let (M,η) be a compact, regular, contact manifold. Then
M is a principal circle bundle over N and η is a connection form of this bundle.
The curvature form Θ of η defines a symplectic form on N .

This fibration S1 −→ M
π−→ N is called the Boothby-Wang fibration.

Let Ω the symplectic 2-form of N . We denote by G the associated metric,
i.e., Ω(X, Y ) = G(X, JY ) with J the almost complex structure.

In the following, by X↑ we denote the lift of a vector field X ∈ χ(N). X↑

is a horizontal vector field of M . On M a (1, 1) tensor field ϕ can be defined,
namely

ϕX↑ = (JX)↑, ϕξ = 0.

We can easily see that
ϕ2 = −I + η ⊗ ξ.

In this way, (ϕ, ξ, η) becomes an almost contact structure. The metric G can
be lifted and hence one defines g on M as follows:

g = π∗G + η ⊗ η.

The metric g is compatible with the contact structure and ξ = η#.
Without loss of generality one can suppose dη = π∗Ω and thus we have

g(X↑, ϕY ↑) = G(X,JY ) ◦ π = Ω(X, Y ) ◦ π = π∗Ω(X↑, Y ↑) = dη(X↑, Y ↑).

In this way, (ϕ, ξ, η, g) becomes a contact metric structure on M .
If the symplectic structure of N derives from a Kaehlerian structure (J,G),

the obtained structure on M is Sasakian (i.e., contact and normal manifold).
See e.g. [3]. But generally, a symplectic structure need not come from a Kaehle-
rian one. Yet, one can always find an almost Kaehlerian structure inducing it.
In this case, the contact structure on the total space of a Boothby-Wang fibra-
tion is K-contact, i.e., the vector field ξ is Killing, namely Lξg = 0. It easily
follows that the integral curves of ξ are geodesics.

It is easy to prove the relation

[X↑, Y ↑] = [X, Y ]↑ − 2G(X,JY )ξ

for all X, Y ∈ χ(N).

Denote by
M

∇ and
N

∇ the Levi-Civita connections on M and N , respectively.
We have

g(
M

∇X↑ Y ↑, Z↑) ◦ π = G(
N

∇X Y, Z)

for any X, Y, Z ∈ χ(N). For the vertical part we shall compute η(
M

∇X↑ Y ↑):

2g(∇M
X↑Y

↑, ξ) = X↑g(Y ↑, ξ) + Y ↑g(X↑, ξ)− ξg(X↑, Y ↑) + g([X↑, Y ↑], ξ)

+ g([ξ, X↑], Y ↑) + g(X↑, [ξ, Y ↑])

= η([X↑, Y ↑])− (Lξg) (X↑, Y ↑)

= − 2dη(X↑, Y ↑).
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We obtain

η(
M

∇X↑ Y ↑) ◦ π = −G(X, JY ).

In the following, we will ignore π, due to the isomorphism between the hori-
zontal distribution of T (M) and T (N). Hence

M

∇X↑ Y ↑ = (
N

∇X Y )↑ −G(X, JY )ξ.

In the same way, one can show

M

∇X↑ ξ = −ϕX↑.

Denote by RM and RN the curvature tensors of M and N , respectively.
Then

RM (X↑, Y ↑)Z↑

=
(
RN (X,Y )Z

)↑
+ g(Y ↑, ϕZ↑)ϕX↑ − g(X↑, ϕZ↑)ϕY ↑ − 2g(x↑, ϕY ↑)ϕZ↑

+
{

g
(
X↑,

( M

∇Y ↑ ϕ
)
Z↑

)− g
(
Y ↑,

( M

∇X↑ ϕ
)
Z↑

)}
ξ

and hence

RM (W ↑, Z↑, X↑, Y ↑) = RN (W,Z,X, Y ) ◦ π − 2g(X↑, ϕY ↑)g(W ↑, ϕZ↑)

+ g(Y ↑, ϕZ↑)g(W ↑, ϕX↑)− g(X↑, ϕZ↑)g(W ↑, ϕY ↑).

Suppose that the base manifold N satisfies Gray identities. What are the
corresponding curvature identities for the upstairs manifold M?

If N is (K1), then

RM (X↑, Y ↑, ϕZ↑, ϕW ↑)−RM (X↑, Y ↑, Z↑,W ↑)

= − g(Y ↑,W ↑)g(Z↑, X↑)− g(Y ↑, ϕW ↑)g(Z↑, ϕX↑)

+ g(X↑,W ↑)g(Z↑, Y ↑) + g(X↑, ϕW ↑)g(Z↑, ϕY ↑).

If N is (K2), then

RM (ϕX↑, Y ↑, Z↑, W ↑) + RM (X↑, ϕY ↑, Z↑, W ↑)

+ RM (X↑, Y ↑, ϕZ↑,W ↑) + RM (X↑, Y ↑, Z↑, ϕW ↑) = 0.

If N is (K3), then

RM (ϕX↑, ϕY ↑, ϕZ↑, ϕW ↑)−RM (X↑, Y ↑, Z↑,W ↑) = 0.

These relations are exactly the defined Gray identities for almost contact metric
manifolds for vector fields orthogonal to ξ.
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4. Properties and examples

In their paper [9], D. Janssens and L. Vanhecke have studied curvature
tensors for almost contact metric structures and defined almost C(α)-manifolds,
namely those almost contact metric manifolds whose curvature tensor satisfies
the following property:

∃α ∈ R such that for all X,Y, Z,W ∈ χ(M)

R(X,Y, Z,W ) = R(X,Y, ϕZ, ϕW ) + α {g(X,Z)g(Y,W )− g(X,W )g(Y,Z)

− g(X,ϕZ)g(Y, ϕW ) + g(X, ϕW )g(Y, ϕZ)} .

(In the original paper [9] different signs appear due the fact that the Riemann
Christoffel curvature tensor is defined with the opposite sign.) This means
that manifolds satisfying the first Gray identity (K1ϕ) in the sense of Bonome
et al. are in fact C(0)-manifolds, while that manifolds satisfying (G1) are
C(1)-manifolds. Note that cosymplectic, Sasakian and Kenmotsu manifolds
are respectively C(0), C(1) and C(−1) manifolds (see Theorem 2.3, in [9]).

Let us come back to Gray identities for an almost Hermitian manifold.

It is known that K1 ⇒ K2 ⇒ K3 (see [8], §5). Consequently we have:

Proposition 4.1. For a class L of almost contact metric manifolds, denote by
Li the subclass of manifolds whose curvature satisfies Gi, i = 1, 2, 3. Then we
have the following inclusions

L1 ⊆ L2 ⊆ L3 ⊆ L.

As Gray remarked for Kaehlerian manifolds, we can say that as i decreases,
a manifold in Li resembles Sasakian manifold more closely.

Proposition 4.2. Let (M, ϕ, ξ, η, g) be a K-contact manifold satisfying G1
curvature identity. Then the manifold M is Sasakian.

Proof. By using Proposition 7.5 in [3, p. 94], a K-contact manifold whose cur-
vature satisfies RXY ξ = η(Y )X − η(X)Y is Sasakian. But this last relation is
a consequence of G1 identity. See also Proposition 2.9. ¤

Proposition 4.3. Let M be a contact metric manifold for which ξ belongs to
the (κ, µ)-nullity distribution, namely its curvature satisfies

RXY ξ = κ (η(Y )X − η(X)Y ) + µ (η(Y )hX − η(X)hY ) ,

where h = 1
2 Lξϕ and κ, µ are constants. Suppose M satisfies (G1) identity.

Then M is Sasakian.

Proof. If M is (G1), then RXY ξ = η(Y )X − η(X)Y for all X, Y ∈ χ(M).
Combining with the fact that ξ belongs to the (κ, µ)-nullity distribution we
obtain

(κ− 1)(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ) = 0



GRAY CURVATURE IDENTITIES 515

for all X, Y ∈ χ(M). If µ 6= 0 this implies hY = 1−κ
µ Y for all Y ∈ ker(η).

We know that h anticommutes with ϕ and hence one gets κ = 1. But using
[3, Theorem 7.7, p. 103], it follows that M is a Sasakian manifold. If µ = 0 we
immediately have κ = 1. ¤

Proposition 4.4. Let (M,ϕ, η, ξ, g) be a contact metric manifold satisfying
(G3) identity. Then M is K-contact.

Proof. Choose a ϕ-adapted local orthonormal frame on M , namely {Xi, ϕXi,
ξ}, i = 1, . . . , n. Since M is (G3) the relation R(X, ξ, Y, ξ) = g(X,Y ) holds
for all X, Y ∈ ker(η). Taking X = Y = Xi (respectively X = Y = ϕXi) one
immediately obtains Ric(ξ, ξ) = 2n, where Ric is the Ricci tensor on M . Now
we use the fact that a contact metric manifold is K-contact if and only if the
Ricci tensor in the direction of the characteristic vector field ξ is equal to 2n
([2, Theorem, p. 65]). ¤

As consequence, we can state:

Proposition 4.5. If (M, ϕ, η, ξ, g) is a contact metric manifold satisfying (G1)
identity, then it is Sasakian.

Proof. The statement follows from Propositions 4.2 and 4.4. ¤

4.1. The generalized Heisenberg group H(p, 1)

It is defined as the set of matrices of real numbers having the form

a =




1 A c
0 Ip

tB
0 0 1


 ,

where Ip is the identity p × p matrix, A = (a1, . . . , ap), B = (b1, . . . , bp) ∈ Rp

and c ∈ R. (Cf. [7].) H(p, 1) is a connected, simply connected nilpotent
Lie group of dimension 2p + 1. We will consider p = 2. A global system of
coordinates (x1, x2, y1, y2, z) on H(2, 1) is defined by xi(a) = ai, yi(a) = bi for
i = 1, 2 and z(a) = c. The global vector fields

Xi = 2
∂

∂xi
, Yi = 2

(
∂

∂yi
+ xi ∂

∂z

)
for i = 1, 2, and ξ = 2

∂

∂z

are left invariant. We consider η = 1
2 (dz − x1dy1 − x2dy2) and the metric

g =
1
4
(dx1 ⊗ dx1 + dx2 ⊗ dx2 + dy1 ⊗ dy1 + dy2 ⊗ dy2) + η ⊗ η.

By direct computations we obtain that dη = − 1
2 (dx1 ∧ dy1 + dx2 ∧ dy2) and

ξ is the characteristic vector field, namely η(ξ) = 1 and iξdη = 0. Moreover,
the basis defined above is orthonormal: g(Xi, Xj) = g(Yi, Yj) = δij , g(ξ, ξ) = 1
and g(Xi, Yj) = g(Xi, ξ) = g(Yi, ξ) = 0. One has [Xi, Yi] = 2ξ for i = 1, 2
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and the other brackets are equal to zero. Therefore it is easy to verify that the
Levi-Civita connection is given by the following formulas:

∇ξXi = −Yi = ∇Xi
ξ,

∇ξYi = Xi = ∇Yi
ξ,

∇Xi
Yi = −∇Yi

Xi = ξ

for i = 1, 2, the other derivatives being zero. We compute also the Riemann-
Christoffel curvature tensor field:

R(X1, X2, Y1, Y2) = −1, R(X1, Y2, X2, Y1) = −1,

R(X1, Y1, X2, Y2) = −2, R(Xi, Yi, Xi, Yi) = −3,

R(Xi, ξ, Xi, ξ) = 1, R(Yi, ξ, Yi, ξ) = 1 for i = 1, 2.

The other values are zero or can be obtained from these ones.
Define ϕ by:

ϕX1 = cos θY1 + sin θY2, ϕX2 = ε sin θY1 − ε cos θY2,

ϕY1 = − cos θX1 − ε sin θX2, ϕY2 = − sin θX1 + ε cos θX2, ϕξ = 0, ε = ±1.

Hence (H(2, 1), ϕ, ξ, η, g) is an almost contact metric manifold.

Proposition 4.6. The structure is quasi Sasakian. Moreover, it is K-contact
if and only if ε = −1 and θ = 0. In this case H(2, 1) becomes a Sasakian
manifold.

Proof. It can be proved that ∇ξϕ = 0. Then for every X, Y ∈ χ(M) we have

g(∇Xξ, Y ) + g(∇Y ξ, X) = 0,

which means that ξ is Killing. The following relation holds on H(2, 1):

g(Y, (∇Xϕ)Z) = η(Y )(∇ϕXη)(Z) + η(Z)(∇Y η)(ϕX)

which characterizes quasi Sasakian manifolds. Direct computations yield the
second part of the statement. ¤

Moreover, we can give the following:

Proposition 4.7. On H(2, 1)

(1) the G3 identity holds if and only if cos θ = 0 or sin θ = 0 or ε = 1;
(2) the G2 identity holds if and only if ε = 1 or sin θ = 0;
(3) the G1 identity holds if and only if ε = −1 and sin θ = 0.

Proof. Straightforward computations. ¤
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4.2. Other examples

Let (N, ḡ, J) be an almost Hermitian manifold. Consider the warped product
manifold M = R ×f N , where f = f(θ) is the warping function and θ is the
global parameter on R. Denote by g = dθ2 + f2(θ)ḡ the Riemannian metric
on M . Define the global vector field ξ = ∂

∂θ and the 1-form η = dθ. Define
also the (1, 1) tensor field ϕ by ϕX = JX if X is tangent to N and ϕ ∂

∂θ = 0.
Thus (ϕ, ξ, η, g) is an almost contact metric structure on M . If ∇̄ and ∇ are
the Levi-Civita connections on N , respectively on M , we have

∇ξX = ∇Xξ =
f ′

f
X, ∇ξξ = 0, ∇XY = ∇̄XY − ff ′ḡ(X,Y )ξ

for all X, Y tangent to N .
The Riemann Christoffel curvature tensor is given by

R(W, ξ, X, Y ) = 0, R(W, ξ, X, ξ) = −f ′′

f
g(X,W ),

R(W,Z, X, Y )=f2
[
R̄(W,Z,X, Y )+(f ′)2 (ḡ(X,Z)ḡ(Y,W )−ḡ(Y,Z)ḡ(X,W ))

]
.

In order to have one of the three curvature identities we directly have

f ′′

f
= −1

which implies that f = α cos θ + β sin θ with α and β real constants. Now one
can state the following:

Proposition 4.8. The manifold M is G2 (respectively G3) if and only if the
almost Hermitian manifold N is K2 (respectively K3).

Proof. One has the following relations:

R(ϕW,Z, X,ϕY ) + R(W,ϕZ, X, ϕY ) + R(W,Z,ϕX, ϕY )

= f2
[
R̄(JW,Z, X, JY ) + R̄(W,JZ, X, JY ) + R̄(W,Z, JX, JY )

]

+ (f ′)2f2
(
ḡ(X, Z)ḡ(Y, W )− ḡ(Y, Z)ḡ(X, W )

)

and

R(W,Z, X, Y )−R(ϕW,ϕZ,ϕX, ϕY )=f2
[
R̄(W,Z, X, Y )− R̄(JW, JZ, JX, JY )

]
.

Hence the statement. ¤

Remark 4.9. If dim N ≥ 4, then the manifold M cannot be G1.

Proof. Suppose M satisfies G1 identity. A straightforward computation gives

R̄(W,Z, JX, JY )− R̄(W,Z, X, Y )

=
(
1 + (f ′)2

) [
ḡ(JX,W )ḡ(JY, Z)− ḡ(JX, Z)ḡ(JY, W )

+ ḡ(Y,W )ḡ(X,Z)− ḡ(Y,Z)ḡ(X, W )
]
.
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Since f depends on θ (and it is not linear) while ḡ and R̄ do not, it follows that
N is K1 and

ḡ(JX, W )ḡ(JY, Z)−ḡ(JX, Z)ḡ(JY, W )+ḡ(Y,W )ḡ(X,Z)−ḡ(Y, Z)ḡ(X,W ) = 0

for all X, Y, Z,W tangent to N . This yields

(10) ḡ(JY, Z)JX − ḡ(JX, Z)JY + ḡ(X, Z)Y − ḡ(Y,Z)X = 0.

If dim N ≥ 4 we can choose X and Y so that X, Y , JX and JY are linearly
independent, so, the previous equality is impossible. ¤

Example 4.10. On R4 consider the global coordinates x, y, u and v respec-
tively. Let z ∈ I = (0, π/2). Define the warped product M = I ×f R4, where
the warping function f : I −→ R is given by f(z) = cos z. More precisely, con-
sider the Riemannian metric g = dz2 + cos2 z

(
dx2 + dy2 + du2 + dv2

)
. Let us

define the almost contact structure by: ξ = ∂z, η = dz, ϕ∂x = ∂y, ϕ∂y = −∂x,
ϕ∂u = ∂v, ϕ∂v = −∂u and ϕ∂z = 0. Then M is G2 but not G1.

The same result holds if on M consider the warped metric

g = dz2 + sin2 z
(
dx2 + dy2 + du2 + dv2

)
.

This kind of structure is called sine-cone and gives way to construct many
geometric objects (e.g. nearly Kaehler structures starting from a 5-dimensional
Sasaki Einstein manifold). Cf. [6].

Proposition 4.11. Let N be a surface and consider the warped product man-
ifold M = I ×N , where I is an open interval. Then M satisfies G1.

Proof. Being a surface, N is automatically Kaehler. The almost contact struc-
ture is defined as in the beginning of this section. The statement follows from
the fact that a Kaehler manifold is K1 and the equation (10) is satisfied in
dimension 2. ¤

4.3. Hypersurfaces of almost Hermitian manifolds

Let (M̃, J, g̃) a (2n+2)-dimensional Kaehler manifold, and let M be a totally
umbilical (real) hypersurface in M̃ . Denote by N the unit normal on M and
let A, h be the Weingarten operator and the scalar-valued second fundamental
form, respectively. As M is totally umbilical, we have that AX = βX for all
X tangent to M , with β ∈ C∞(M).

It is well known the fact that on M we can define an almost contact metric
structure (see e.g. [3]). More precisely, we take ξ = −JN and for X ∈ χ(M)
we decompose JX as:

JX = ϕX + η(X)N.

Let g be the restriction of the metric g̃ on M . Denote by ∇̃ (respectively ∇)
the Levi-Civita connection on M̃ (respectively on M). Then, by the formula
of Gauss, one has

∇̃Xξ = ∇Xξ + h(X, ξ)N.
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On the other hand, we have ∇̃Xξ = −J∇̃XN = JAX = ϕAX + η(AX)N .
Hence

∇Xξ = ϕAX and h(X, ξ) = η(AX).
Suppose now that M satisfies the (G3) identity. This implies

(11) R(X, ξ, Y, ξ) = g(X, Y ) ∀X,Y ∈ ker(η).

We should compute R(X, ξ)ξ = ∇X∇ξξ−∇ξ∇Xξ−∇[X,ξ]ξ. Since M is totally
umbilical, we have ∇Xξ = βϕX. Thus ∇ξξ = 0. Then

∇ξ∇Xξ = ξ(β)ϕX + β(∇ξϕ)X + βϕ∇ξX.

But
∇ξX = βϕX − [X, ξ]

and so
∇ξ∇Xξ = ξ(β)ϕX + β(∇ξϕ)X + β2ϕ2X − βϕ[X, ξ].

It follows that

R(X, ξ)ξ = −ξ(β)ϕX − β(∇ξϕ)X + β2X.

Now, due to the fact M is Kaehler, we have

∇̃(JY ) = J∇̃XY = J(∇XY + h(X, Y )N) = ϕ∇XY + η(∇XY )N − h(X, Y )ξ.

On the other hand

∇̃(JY ) = ∇̃X(ϕY + η(Y )N) = ∇(ϕY ) + h(X, ϕY )N + Xη(Y )N − η(Y )βX.

Identifying the tangent and the normal parts of ∇̃(JY ) we obtain

(12) (∇Xϕ)Y = βη(Y )X − βg(X, Y )ξ,

(∇Xη)(Y ) = −βg(X, ϕY ),
respectively.

Putting X = ξ in (12) we have (∇ξϕ)Y = βη(Y )ξ − βg(ξ, Y )ξ = 0 which
implies

∇ξϕ = 0.

Then
R(X, ξ)ξ = −ξ(β)ϕX + β2X.

From (11) we have

g(β2X −X − ξ(β)ϕX, Y ) = 0, ∀Y ∈ ker(η).

As X and ϕX are linearly independent (and belong to ker(η)), we obtain
β = ±1.

Consequently

AX = ±X and h(X, Y ) = ±g(X,Y ).

For β = −1 it follows that

(∇Xϕ)Y = g(X, Y )ξ − η(Y )X.

According to Theorem 6.14 in [3] this implies that M is Sasakian.
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Proposition 4.12. Let M be a totally umbilical hypersurface of a Kaehler
manifold M̃ endowed with the usual almost contact metric structure. If M
satisfies G3 identity, then M is a Sasakian manifold and hence M satisfies all
Gi for i = 1, 2, 3.

More generally, if the second fundamental form of M is given by

h(X,Y ) = λη(X)η(Y ) + µg(X, Y ), ∀X, Y ∈ χ(M)

with λ and µ smooth functions on M , i.e., M is totally quasi umbilical, and
if M satisfies (G3) identity, then it is Sasakian. As consequence, there is no
cylindrical submanifold satisfying (G3) and whose second fundamental form is
h(X, Y ) = λη(X)η(Y ).
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