DOI QR코드

DOI QR Code

Metal Insulator Gate Geometric HEMT: Novel Attributes and Design Consideration for High Speed Analog Applications

  • Gupta, Ritesh (Semiconductor Device Research Laboratory Department of Electronic Science, University of Delhi South Campus) ;
  • Kaur, Ravneet (Acharya Narendra Dev College, University of Delhi Department of Electronics) ;
  • Aggarwal, Sandeep Kr (HRMITM, GGSIP University) ;
  • Gupta, Mridula (Semiconductor Device Research Laboratory Department of Electronic Science, University of Delhi South Campus) ;
  • Gupta, R.S. (Semiconductor Device Research Laboratory Department of Electronic Science, University of Delhi South Campus)
  • Received : 2009.11.15
  • Published : 2010.03.31

Abstract

Improvement in breakdown voltage ($BV_{ds}$) and speed of the device are the key issues among the researchers for enhancing the performance of HEMT. Increased speed of the device aspires for shortened gate length ($L_g$), but due to lithographic limitation, shortening $L_g$ below sub-micrometer requires the inclusion of various metal-insulator geometries like T-gate onto the conventional architecture. It has been observed that the speed of the device can be enhanced by minimizing the effect of upper gate electrode on device characteristics, whereas increase in the $BV_{ds}$ of the device can be achieved by considering the finite effect of the upper gate electrode. Further, improvement in $BV_{ds}$ can be obtained by applying field plates, especially at the drain side. The important parameters affecting $BV_{ds}$ and cut-off frequency ($f_T$) of the device are the length, thickness, position and shape of metal-insulator geometry. In this context, intensive simulation work with analytical analysis has been carried out to study the effect of variation in length, thickness and position of the insulator under the gate for various metal-insulator gate geometries like T-gate, $\Gamma$-gate, Step-gate etc., to anticipate superior device performance in conventional HEMT structure.

Keywords

References

  1. D. F. Weslch, G. W. Wicks, and L. F. Eastman, “Calculation of the conduction band discontinuity for InAlAs/InGaAs heterojunction,” J. Appl. Phys., Vol. 55, p.3176 1984. https://doi.org/10.1063/1.333348
  2. K. Y. Chen, A. Y. Cho, S. G. Christman, T. P. Pearsall and J. E. Rowe “Measurement of the ${\Gamma}$-L separation in InGaAs by ultraviolet photoemission,” Appl. Phys. Lett., Vol.40, p. 423 1980.
  3. Sandeep R. Bahl and Jesus A. del Alamo, “Physics of Breakdown in InAlAs/$n^{+}$ - InGaAs Heterostructure Field -Effect Transistors,” IEEE Trans. Electron Devices, Vol.41, No.12, December 1994 2268-2275. https://doi.org/10.1109/16.337438
  4. Sandeep R. Bahl, Jesus A. del Alamo, Jurgen Dickmann and Steffen Schildberg, “Off State Breakdown in InAlAs/InGaAs MODFET’s,” IEEE Trans. Electron Device, Vol.42, No.1, January 1995 15-22. https://doi.org/10.1109/16.370041
  5. Aldo Di Carlo, Lorenzo Rossi, Paolo Lugli, Gunther Zandler, Gaudenzio Meneghesso, Mike Jackson and Enrico Zanoni, “Monte Carlo Study of the Dynamic Breakdown Effects in HEMT’s,” IEEE Electron Device Letters, Vol.21, No.4 April 2000, 149-151. https://doi.org/10.1109/55.830964
  6. Mark H. Somerville, Chris S. Putnam and Jesus A. del Alamo, “Determining dominant breakdown mechanisms in InP HEMTs,” IEEE Electron Device letters, Vol.22, No.12, December 2001 565-567. https://doi.org/10.1109/55.974578
  7. M. Borgarino, R. Menozzi, D. Dieci, L. Cattani and F. Fantini, “Reliability physics of compound semiconductor transistors for microwave applications,” Microelectronics Reliability Vol.41, 2001, 21-30. https://doi.org/10.1016/S0026-2714(00)00206-7
  8. Gaudenzio Meneghesso and Enrico Zanoni, “Failure modes and mechanisms of InP-based and metamorphic high electron mobility transistors,” Microelectronic reliability, Vol.42, 2002, 685-708. https://doi.org/10.1016/S0026-2714(02)00045-8
  9. Ammar Sleiman, Aldo Di Carlo, Paolo Lugli, G. Meneghesso, E. Zanoni and J. L. Thobel, “Channel Thickness dependence of Breakdown Dynamic in InP-based lattice-Matched HEMTs,” IEEE Trans. Electron Device, Vol.50, No.10, October 2003 2009-2014. https://doi.org/10.1109/TED.2003.816105
  10. K. Higuchi, H. Matsumoto, T. Mishima and T. Nakamura, “High Breakdown voltage InAlAs/InGaAs High Electron Mobility Transistors on GaAs with Wide Recess Structure,” Jpn. J. Appl. Phys. Vol. 38, 1999, pp.1178-1181. https://doi.org/10.1143/JJAP.38.1178
  11. Y. C. Lien et al, “Low-Noise Metamorphic HEMTs with Reflowed 0.1-${\mu}m$ T-Gate,” IEEE Electron Device Letters, Vol.25, No.6, p.348 June 2004. https://doi.org/10.1109/LED.2004.829027
  12. K. Elgaid, H. McLelland, M. Holland, D. A. J. Moran, C. R. Stanley, and I. G. Thayne, “50-nm T-Gate Metamorphic GaAs HEMTs With $f_T$ of 440 GHz and Noise Figure of 0.7 dB at 26 GHz,” IEEE Electron Device Letters, Vol.26, No.11, p.784 November 2005. https://doi.org/10.1109/LED.2005.857716
  13. Ming-Jyh Hwu, Hsien-Chin Chiu, Shih-Cheng Yang, and Yi-Jen Chan, “A Novel Double-Recessed 0.2-_m T-Gate Process for Heterostructure InGaP-InGaAs Doped-Channel FET Fabrication,” IEEE Electron Device Letters, Vol.24, No.6, p.381 June 2003. https://doi.org/10.1109/LED.2003.813352
  14. D.S. Wen, C.C-H. Hsu, Y. Taur, D.S. Zicherman, M.R. Wordeman, and T.H. Ning, “A Self-Aligned Inverse-T Gate Fully Overlapped LDD Device for Sub-Half Micron CMOS,” IEDM Tech. Dig., p.766-769. 1989.
  15. Y. C. Chou, et al, “Reliability Investigation of 0.07-${\mu}m$ InGaAs-InAlAs-InP HEMT MMICs With Pseudomorphic $In_{0.75}Ga_{0.25}As$ Channel,” IEEE Electron Device Letters, Vol. 24, No.6, p.378 June 2003. https://doi.org/10.1109/LED.2003.813357
  16. G. H. Jessen, et al, “High Performance 0.14 ${\mu}m$ Gate-Length AlGaN/GaN Power HEMTs on SiC,” IEEE Electron Device Letters, Vol.24, No.11, p.677 November 2003. https://doi.org/10.1109/LED.2003.818816
  17. S. J. Koester, R. Hammond, and J. O. Chu, “Extremely High Transconductance $Ge/Si_{0.4}Ge_{0.6}$ p-MODFET’s Grown by UHV-CVD,” IEEE Electron Device Letters, Vol.21, No.3, p.110 March 2000. https://doi.org/10.1109/55.823572
  18. D. Geiger et al, “InGaP/InGaAs HFET with High Current Density and High Cut-Off Frequencies,” IEEE Electron Device Letters, Vol.16, No.6, p.259 June 1995. https://doi.org/10.1109/55.790728
  19. W.-S. Lour, Member, IEEE, W. L. Chang, Y. M. Shih, and W. C. Liu, “New Self-Aligned T-Gate InGaP/GaAs Field-Effect Transistors Grown by LP-MOCVD,” IEEE Electron Device Letters, Vol.20, No.6, p. 304 June 1999. https://doi.org/10.1109/55.767106
  20. T. Enoki, H. Yokoyama, Y. Umeda and T. Otsuji, “Ultrahigh-Speed Integrated Circuits Using InP Based HEMTs,” Jpn. J. Appl. Phys., Vol.37, pp.1359-1364 1998. https://doi.org/10.1143/JJAP.37.1359
  21. K. L. Tan et al, “140 GHz $0.1{\mu}m$ Gate-length pseudomorphic InAlAs/InGaAs/InP HEMT,” IEEE IEDM Tech. Digest, 1991 p. 239.
  22. A. Lepore, M. Levy, H. Lee, and E. Kohn, “Fabrication and Performance of 0.1-pm Gate-Length AlGaAs/GaAs HEMT’s with Unity Current Gain Cutoff Frequency in Excess of 110 GHz,” IEEE Trans Electron Device, Vol.35, No.12, p.2441 December 1988. https://doi.org/10.1109/16.8859
  23. Shreepad Karmalkar, Michael S. Shur, Grigory Simin, and M. Asif Khan, “Field-Plate Engineering for HFETs,” IEEE Trans Electron Devices, Vol.52, 2005, Pp. 2534-2540. https://doi.org/10.1109/TED.2005.859568
  24. N.-Q. Zhang, S. Keller, G. Parish, S. Heikman, S. P. DenBaars, and U. K. Mishra, “High Breakdown GaN HEMT with Overlapping Gate Structure,” IEEE Electron Device Lett., Vol.21, No.9, September 2000, pp.421-423. https://doi.org/10.1109/55.863096
  25. Shreepad Karmalkar, Jianyu Deng, Michael S. Shur, and Remis Gaska “RESURF AlGaN/GaN HEMT for High Voltage Power Switching,” IEEE Electron Device Lett., Vol.22, No.8, August 2001, pp.373-375. https://doi.org/10.1109/55.936347
  26. Shreepad Karmalkar and Umesh K. Mishra, “Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using a Field Plate,” IEEE Trans Electron Devices, Vol.48, No.8, August 2001, pp. 1515-1521. https://doi.org/10.1109/16.936500
  27. Y. Ando, Y. Okamoto, H. Miyamoto, T. Nakayama, T. Inoue, and M. Kuzuhara, “10-W/mm AlGaN-GaN HFET With a Field Modulating Plate,” IEEE Electron Device Lett., Vol.24, No.5, May 2003, pp.289-291. https://doi.org/10.1109/LED.2003.812532
  28. Shreepad Karmalkar and N. Soudabi, “A Closed-Form Model of the Drain-Voltage Dependence of the OFF-State Channel Electric Field in a HEMT With a Field Plate,” IEEE Trans Electron Devices, Vol.53, No.10, October 2006, pp. 2430-2437. https://doi.org/10.1109/TED.2006.882273
  29. Huili Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, and U. K. Mishra, “High Breakdown Voltage AlGaN-GaN HEMTs Achieved by Multiple Field Plates,” IEEE Electron Device Lett., Vol.25, No.4, April 2004, pp. 161-163. https://doi.org/10.1109/LED.2004.824845
  30. Ritesh Gupta, Sandeep kr Aggarwal, M. Gupta and R. S. Gupta, “Short Channel Analytical Model for High Electron Mobility Transistor to obtain Higher Cut-Off Frequency maintaining the Reliability of the Device,” Journal of Semiconductor Technology and Science (JSTS) Vol. 7, no.2, pp. 120-131 June 2007. https://doi.org/10.5573/JSTS.2007.7.2.120
  31. ATLAS Device Simulator, Silvaco Int., Santa Clara, CA, Spring-2003.
  32. Ritesh Gupta, Sandeep kr Aggarwal, M. Gupta and R. S. Gupta, “Analytical Model for Metal insulator Semiconductor High Electron Mobility Transistor (MISHEMT) for its high frequency and high power applications,” Journal of Semiconductor Technology and Science (JSTS), Vol.6, No.3, pp.189-198 September 2006.
  33. Ritesh Gupta, A. Kranti, S. Haldar, M. Gupta and R. S. Gupta, “An Analytical parasitic resistance dependent $I_{d}-V_{d}$ model for Planar doped InAlAs/InGaAs/InP HEMT using Non-linear Charge control Analysis,” Microelectronic Engineering, Vol.60, pp. 323-337 2002. https://doi.org/10.1016/S0167-9317(01)00689-X
  34. Ritesh Gupta, Servin Rathi, Ravneet Kaur, Mridula Gupta, R.S. Gupta, “ T-gate geometric (solution for submicrometer gate length) HEMT: Physical analysis, modeling and implementation as parasitic elements and its usage as dual gate for variable gain amplifiers”, Superlattice and Microstructures Vol.45, pp.105-116, 2009. https://doi.org/10.1016/j.spmi.2008.12.032